Learning the Pandas Library
Python Tools for Data Munging, Data Analysis, and Visualization

Matt Harrison
Treading on Python Series

Learning Pandas

Python Tools for Data Munging, Data Analysis, and Visualization

Matt Harrison

Technical Editor:
Copyright © 2016

While every precaution has been taken in the preparation of this book, the publisher and author assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
Table of Contents

From the Author
Introduction
Installation
Data Structures
Series
Series CRUD
Series Indexing
Series Methods
Series Plotting
Another Series Example
DataFrames
Data Frame Example
Data Frame Methods
Data Frame Statistics
Grouping, Pivoting, and Reshaping
Dealing With Missing Data
Joining Data Frames
Avalanche Analysis and Plotting
Summary
About the Author
Also Available
One more thing
From the Author

Python is easy to learn. You can learn the basics in a day and be productive with it. With only an understanding of Python, moving to pandas can be difficult or confusing. This book is meant to aid you in mastering pandas.

I have taught Python and pandas to many people over the years, in large corporate environments, small startups, and in Python and Data Science conferences. I have seen what hangs people up, and confuses them. With the correct background, an attitude of acceptance, and a deep breath, much of this confusion evaporates.

Having said this, pandas is an excellent tool. Many are using it around the world to great success. I hope you do as well.

Cheers!

Matt
I have been using Python is some professional capacity since the turn of the century. One of the trends that I have seen in that time is the uptake of Python for various aspects of "data science"—gathering data, cleaning data, analysis, machine learning, and visualization. The pandas library has seen much uptake in this area.

Pandas is a data analysis library for Python that has exploded in popularity over the past years. The website describes it thusly:

“Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.”

-pandas.pydata.org

My description of pandas is: pandas is an in memory nosql database, that has sql-like constructs, basic statistical and analytic support, as well as graphing capability. Because it is built on top of Cython, it has less memory overhead and runs quicker. Many people are using pandas to replace Excel, perform ETL, process tabular data, load CSV or JSON files, and more. Though it grew out of the financial sector (for analysis of time series data), it is now a general purpose data manipulation library.

Because pandas has some lineage back to NumPy, it adopts some NumPy'isms that normal Python programmers may not be aware of or familiar with. Certainly, one could go out and use Cython to perform fast typed data analysis with a Python-like dialect, but with pandas, you don't need to. This work is done for you. If you are using pandas and the
vectorized operations, you are getting close to C level speeds, but writing Python.

Who this book is for

This guide is intended to introduce pandas to Python programmers. It covers many (but not all) aspects, as well as some gotchas or details that may be counter-intuitive or even non-pythonic to longtime users of Python.

This book assumes basic knowledge of Python. The author has written *Treading on Python Vol 1* that provides all the background necessary.

Data in this Book

Some might complain that the datasets in this book are small. That is true, and in some cases (as in plotting a histogram), that is a drawback. On the other hand, every attempt has been made to have real data that illustrates using pandas and the features found in it. As a visual learner, I appreciate seeing where data is coming and going. As such, I try to shy away from just showing tables of random numbers that have no meaning.

Hints, Tables, and Images

The hints, tables, and graphics found in this book, have been collected over almost five years of using pandas. They are derived from hangups, notes, and cheatsheets that I have developed after using pandas and teaching others how to use it. Hopefully, they are useful to you as well.

In the physical version of this book, is an index that has also been battle-tested during development. Inevitably, when I was doing analysis not related to the book, I would check that the index had the information I needed. If it didn't, I added it. Let me know if you find any omissions!

Finally, having been around the publishing block and releasing content to the world, I realize that I probably have many omissions that others might consider required knowledge. Many will enjoy the content, others might have the opposite reaction. If you have feedback, or suggestions for
improvement, please reach out to me. I love to hear back from readers! Your comments will improve future versions.

1 - pandas (http://pandas.pydata.org) refers to itself in lowercase, so this book will follow suit.

2 - http://hairysun.com/books/tread/
Installation

Python 3 has been out for a while now, and people claim it is the future. As an attempt to be modern, this book will use Python 3 throughout! Do not despair, the code will run in Python 2 as well. In fact, review versions of the book neglected to list the Python version, and there was a single complaint about a superfluous `list(range(10))` call. The lone line of (Python 2) code required for compatibility is:

```python
>>> from __future__ import print_function
```

Having gotten that out of the way, let's address installation of pandas. The easiest and least painful way to install pandas on most platforms is to use the Anaconda distribution. Anaconda is a meta distribution of Python, that contains many additional packages that have traditionally been annoying to install unless you have toolchains to compile Fortran and C code. Anaconda allows you to skip the compile step and provides binaries for most platforms. The Anaconda distribution itself is freely available, though commercial support is available as well.

After installing the Anaconda package, you should have a `conda` executable. Running:

```bash
$ conda install pandas
```

Will install pandas and any dependencies. To verify that this works, simply try to import the `pandas` package:

```bash
$ python
>>> import pandas
>>> pandas.__version__
'0.18.0'
```

If the library successfully imports, you should be good to go.

Other Installation Options
The pandas library will install on Windows, Mac, and Linux via pip ⁴. Mac and Windows users wishing to install binaries may download them from the pandas website. Most Linux distributions also have native packages pre-built and available in their repos. On Ubuntu and Debian, `apt-get` will install the library:

$ sudo apt-get install python-pandas

Pandas can also be installed from source. I feel the need to advise you that you might spend a bit of time going down this rabbit hole if you are not familiar with getting compiler toolchains installed on your system.

It may be necessary to prep the environment for building pandas from source by installing dependencies and the proper header files for Python. On Ubuntu this is straightforward, other environments may be different:

$ sudo apt-get install build-essential python-all-dev

Using `virtualenv` ⁵ will alleviate the need for superuser access during installation. Because `virtualenv` uses `pip`, it can download and install newer releases of pandas if the version found on the distribution is lagging.

On Mac and Linux platforms, the following create a `virtualenv` sandbox and installs the latest pandas in it (assuming that the prerequisite files are also installed):

$ virtualenv pandas-env
$ source pandas-env/bin/activate
$ pip install pandas

After a while, pandas should be ready for use. Try to import the library and check the version:

$ source pandas-env/bin/activate
$ python
>>> import pandas
>>> pandas.__version__
'0.18.0'

scipy.stats

Some nicer plotting features require `scipy.stats`. This library is not required, but pandas will complain if the user tries to perform an action
that has this dependency. `scipy.stats` has many non-Python dependencies and in practice turns out to be a little more involved to install. For Ubuntu, the following packages are required before a `pip install scipy` will work:

```
$ sudo apt-get install libatlas-base-dev gfortran
```

Installation of these dependencies is sufficiently annoying that it has lead to “complete scientific Python offerings”, such as Anaconda ⁵. These installers bundle many libraries, are available for Linux, Mac, and Windows, and have optional support contracts. They are a great way to quickly get an environment up.

Summary

Unlike "pure" Python modules, pandas is not just a pip install away unless you have an environment configured to build it. The easiest was to get going is to use the Anaconda Python distribution. Having said that, it is certainly possible to install pandas using other methods.

³ - https://www.continuum.io/downloads
⁵ - http://www.virtualenv.org
⁶ - https://store.continuum.io/cshop/anaconda/
Data Structures

One of the keys to understanding Pandas is to understand the data model. At the core of Pandas are three data structures:

<table>
<thead>
<tr>
<th>DATA STRUCTURE</th>
<th>DIMENSIONALITY</th>
<th>SPREADSHEET ANALOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>1D</td>
<td>Column</td>
</tr>
<tr>
<td>DataFrame</td>
<td>2D</td>
<td>Single Sheet</td>
</tr>
<tr>
<td>Panel</td>
<td>3D</td>
<td>Multiple Sheets</td>
</tr>
</tbody>
</table>

The most widely used data structures are the Series and the DataFrame that deal with array data and tabular data respectively. An analogy with the spreadsheet world illustrates the basic differences between these types. A DataFrame is similar to a sheet with rows and columns, while a Series is similar to a single column of data. A Panel is a group of sheets. Likewise, in Pandas a Panel can have many DataFrames, each which in turn may have multiple Series.
Figure showing relation between main data structures in pandas. Namely, that a data frame can have multiple series, and a panel has multiple data frames.

Diving into these core data structures a little more is useful because a bit of understanding goes a long way towards better use of the library. This book will ignore the Panel, because I have yet to see anyone use it in the real world. On the other hand, we will spend a good portion of time discussing the Series and DataFrame. Both the Series and DataFrame share features. For example they both have an index, which we will need to examine to really understand how pandas works.

Also, because the DataFrame can be thought of as a collection of columns that are really Series objects, it is imperative that we have a
comprehensive study of the Series first. Additionally, we see this when we iterate over rows, and the rows are represented as Series.

Some have compared the data structures to Python lists or dictionaries, and I think this is a stretch that doesn't provide much benefit. Mapping the list and dictionary methods on top of pandas' data structures just leads to confusion.

Summary

The pandas library includes three main data structures and associated functions for manipulating them. This book will focus on the Series and DataFrame. First, we will look at the Series as the DataFrame can be thought of as a collection of Series.
Series

A **Series** is used to model one dimensional data, similar to a list in Python. The Series object also has a few more bits of data, including an index and a name. A common idea through pandas is the notion of an axis. Because a series is one dimensional, it has a single **axis**—the index.

Below is a table of counts of songs artists composed:

<table>
<thead>
<tr>
<th>Artist</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>1</td>
<td>142</td>
</tr>
<tr>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

To represent this data in pure Python, you could use a data structure similar to the one that follows. It is a dictionary that has a list of the data points, stored under the 'data' key. In addition to an entry in the dictionary for the actual data, there is an explicit entry for the corresponding index values for the data (in the 'index' key), as well as an entry for the name of the data (in the 'name' key):

```python
>>> ser = {
...   'index':[0, 1, 2, 3],
...   'data':[145, 142, 38, 13],
...   'name':'songs'
... }
```

The `get` function defined below can pull items out of this data structure based on the index:

```python
>>> def get(ser, idx):
...     value_idx = ser['index'].index(idx)
...     return ser['data'][value_idx]
>>> get(ser, 1)
```

14
The code samples in this book are generally shown as if they were typed directly into an interpreter. Lines starting with `>>>` and `...` are interpreter markers for the *input prompt* and *continuation prompt* respectively. Lines that are not prefixed by one of those sequences are the output from the interpreter after running the code.

The Python interpreter will print the return value of the last invocation (even if the `print` statement is missing) automatically. To use the code samples found in this book, leave the interpreter markers out.

The index abstraction

This double abstraction of the index seems unnecessary at first glance—a list already has integer indexes. But there is a trick up pandas’ sleeves. By allowing non-integer values, the data structure actually supports other index types such as strings, dates, as well as arbitrary ordered indices or even duplicate index values.

Below is an example that has string values for the index:

```python
>>> songs = {
...     'index':['Paul', 'John', 'George', 'Ringo'],
...     'data':[145, 142, 38, 13],
...     'name':'counts'
... }

>>> get(songs, 'John')
142
```

The index is a core feature of pandas’ data structures given the library’s past in analysis of financial data or *time series data*. Many of the operations performed on a *Series* operate directly on the index or by index lookup.

The pandas Series
With that background in mind, let’s look at how to create a Series in pandas. It is easy to create a Series object from a list:

```python
>>> import pandas as pd
>>> songs2 = pd.Series([145, 142, 38, 13],
...     name='counts')
>>> songs2
0    145
1    142
2     38
3     13
Name: counts, dtype: int64
```

When the interpreter prints our series, pandas makes a best effort to format it for the current terminal size. The left most column is the index column which contains entries for the index. The generic name for an index is an axis, and the values of the index—0, 1, 2, 3—are called axis labels. The two dimensional structure in pandas—a DataFrame—has two axes, one for the rows and another for the columns.

![Figure showing the parts of a Series.](image)

The rightmost column in the output contains the values of the series. In this case, they are integers (the console representation says `dtype: int64`, `dtype` meaning data type, and `int64` meaning 64 bit integer), but in
general values of a Series can hold strings, floats, booleans, or arbitrary Python objects. To get the best speed (such as vectorized operations), the values should be of the same type, though this is not required.

It is easy to inspect the index of a series (or data frame), as it is an attribute of the object:

```python
>>> songs2.index
RangeIndex(start=0, stop=4, step=1)
```

The default values for an index are monotonically increasing integers. songs2 has an integer based index.

Note
The index can be string based as well, in which case pandas indicates that the datatype for the index is object (not string):

```python
>>> songs3 = pd.Series([145, 142, 38, 13],
... name='counts',
... index=['Paul', 'John', 'George', 'Ringo'])
```

Note that the `dtype` that we see when we print a Series is the type of the values, not of the index:

```python
>>> songs3
Paul      145
John      142
George     38
Ringo      13
Name: counts, dtype: int64
```

When we inspect the index attribute, we see that the `dtype` is `object`:

```python
>>> songs3.index
Index(['Paul', 'John', 'George', 'Ringo'],
 dtype='object')
```

The actual data for a series does not have to be numeric or homogeneous. We can insert Python objects into a series:

```python
>>> class Foo:
...     pass
...     pass
```
In the above case, the dtype - datatype - of the Series is object (meaning a Python object). This can be good or bad.

The object data type is used for strings. But, it is also used for values that have heterogeneous types. If you have numeric data, you wouldn’t want it to be stored as a Python object, but rather as an int64 or float64, which allow you to do vectorized numeric operations.

If you have time data and it says it has the object type, you probably have strings for the dates. This is bad as you don’t get the date operations that you would get if the type were datetime64[ns]. Strings on the other hand, are stored in pandas as object. Don’t worry, we will see how to convert types later in the book.

The NaN value

A value that may be familiar to NumPy users, but not Python users in general, is NaN. When pandas determines that a series holds numeric values, but it cannot find a number to represent an entry, it will use NaN. This value stands for Not A Number, and is usually ignored in arithmetic operations. (Similar to NULL in SQL).

Here is a series that has NaN in it:

```python
>>> nan_ser = pd.Series([[2, None],
...     index=['Ono', 'Clapton'])
```

```python
Ono  2.0
Clapton  NaN
dtype: float64
```

Note
One thing to note is that the type of this series is float64, not int64! This is because the only numeric column that supports NaN is the float column. When pandas sees numeric data (2) as well as the None, it coerced the 2 to a float value.

Below is an example of how pandas ignores NaN. The .count method, which counts the number of values in a series, disregards NaN. In this case, it indicates that the count of items in the Series is one, one for the value of 2 at index location Ono, ignoring the NaN value at index location Clapton:

```python
>>> nan_ser.count()
1
```

Note
If you load data from a CSV file, an empty value for an otherwise numeric column will become NaN. Later, methods such as .fillna and .dropna will explain how to deal with NaN.

None, NaN, nan, and null are synonyms in this book when referring to empty or missing data found in a pandas series or data frame.

Similar to NumPy
The Series object behaves similarly to a NumPy array. As show below, both types respond to index operations:

```python
>>> import numpy as np
>>> numpy_ser = np.array([145, 142, 38, 13])
>>> songs3[1]
142
>>> numpy_ser[1]
142
```

They both have methods in common:

```python
>>> songs3.mean()
84.5
```
They also both have a notion of a boolean array. This is a boolean expression that is used as a mask to filter out items. Normal Python lists do not support such fancy index operations:

```python
>>> mask = songs3 > songs3.median()  # boolean array
>>> mask
Paul    True
John    True
George  False
Ringo   False
Name: counts, dtype: bool
```

Once we have a mask, we can use that to filter out items of the sequence, by performing an index operation. If the mask has a True value for a given index, the value is kept. Otherwise, the value is dropped. The mask above represents the locations that have a value greater than the median value of the series.

```python
>>> songs3[mask]
Paul    145
John    142
Name: counts, dtype: int64
```

NumPy also has filtering by boolean arrays, but lacks the .median method on an array. Instead, NumPy provides a median function in the NumPy namespace:

```python
>>> numpy_ser[numpy_ser > np.median(numpy_ser)]
array([145, 142])
```

Note

Both NumPy and pandas have adopted the convention of using import statements in combination with an as statement to rename their imports to two letter acronyms:

```python
>>> import pandas as pd
>>> import numpy as np
```

This removes some typing while still allowing the user to be explicit with their namespaces.
Be careful, as you may see to following cast about in code samples:

```python
>>> from pandas import *
```

Though you see *star imports* frequently used in examples online, I would advise not to use star imports. They have the potential to clobber items in your namespace and make tracing the source of a definition more difficult (especially if you have multiple star imports). As the Zen of Python states, “Explicit is better than implicit” 7.

Summary

The `Series` object is a one dimensional data structure. It can hold numerical data, time data, strings, or arbitrary Python objects. If you are dealing with numeric data, using pandas rather than a Python list will give you additional benefits as it is faster, consumes less memory, and comes with built-in methods that are very useful to manipulate the data. In addition, the index abstraction allows for accessing values by position or label. A `Series` can also have empty values, and has some similarities to NumPy arrays. This is the basic workhorse of pandas, mastering it will pay dividends.

7 - Type `import this` into an interpreter to see the Zen of Python. Or search for "PEP 20".
Series CRUD

The pandas Series data structure provides support for the basic CRUD operations—create, read, update, and delete. One thing to be aware of is that in general pandas objects tend to behave in an immutable manner. Although they are mutable, you don’t normally update a series, but rather perform an operation that will return a new Series. Exceptions to this are noted throughout the book.

Creation

It is easy to create a series from a Python list of values. Here we create a series with the count of songs attributed to George Harrison during the final years of The Beatles and the release of his 1970 album, All Things Must Pass. The index is specified as the second parameter using a list of string years as values. Note that 1970 is included once for George's work as a member of the Beatles and repeated for his solo album:

```python
>>> george_dupe = pd.Series([10, 7, 1, 22],
... index=['1968', '1969', '1970', '1970'],
... name='George Songs')
```

```plaintext
1968    10
1969     7
1970     1
1970    22
Name: George Songs, dtype: int64
```

The previous example illustrates an interesting feature of pandas—the index values are strings and they are not unique. This can cause some confusion, but can also be useful when duplicate index items are needed.

This series was created with a list and an explicit index. A series can also be created with a dictionary that maps index entries to values. If a dictionary is used, an additional sequence containing the order of the index
is mandatory. This last parameter is necessary because a Python dictionary is not ordered.

For our current data, creating this series from a dictionary is less powerful, because it cannot place different values in a series for the same index label (a dictionary has unique keys and we are using the keys as index labels). One might attempt to get around this by mapping the label to a list of values, but these attempts will fail. The list of values will be interpreted as a Python list, not two separate entries:

```python
>>> g2 = pd.Series({'1969': 7, '1970': [1, 22]},
```

```plaintext
1969          7
1970    [1, 22]
1970    [1, 22]
```

```python
>>> g2
```

```plaintext
1969          7
1970    [1, 22]
1970    [1, 22]
dtype: object
```

Tip

If you need to have multiple values for an index entry, use a list to specify both the index and values.

Reading

To read or select the data from a series, one can simply use an index operation in combination with the index entry:

```python
>>> george_dupe['1968']
```

```plaintext
10
```

Normally this returns a scalar value. However, in the case where index entries repeat, this is not the case! Here, the result will be another `Series` object:

```python
# may not be a scalar!
>>> george_dupe['1970']
```

```plaintext
1970    1
1970    22
Name: George Songs, dtype: int64
```

Note
Care must be taken when working with data that has non-unique index values. Scalar values and Series objects have a different interface, and trying to treat them the same will lead to errors.

We can iterate over data in a series as well. When iterating over a series, we loop over the values of the series:

```python
>>> for item in george_dupe:
...     print(item)
10
7
1
22
```

However, though iteration (looping over the values via the `.__iter__` method) occurs over the values of a series, membership (checking for value in the series with the `.__contains__` method) is against the index items. Neither Python lists nor dictionaries behave this way. If you wanted to know if the value 22 was in `george_dupe`, you might fall victim to an erroneous result if you think you can simply use the `in` test for membership:

```python
>>> 22 in george_dupe
False
```

To test a series for membership, test against the set of the series or the `.values` attribute:

```python
>>> 22 in set(george_dupe)
True

>>> 22 in george_dupe.values
True
```

This can be tricky, remember that in a series, although iteration is over the values of the series, membership is over the index names:

```python
>>> '1970' in george_dupe
True
```

To iterate over the tuples containing both the index label and the value, use the `.iteritems` method:
>>> for item in george_dupe.iteritems():
... print(item)
('1968', 10)
('1969', 7)
('1970', 1)
('1970', 22)

Updating

Updating values in a series can be a little tricky as well. To update a value for a given index label, the standard index assignment operation works and performs the update in-place (in effect mutating the series):

```python
>>> george_dupe['1969'] = 6
>>> george_dupe['1969']
6
```

The index assignment operation also works to add a new index and a value. Here we add the count of songs for his 1973 album, *Living in a Material World*:

```python
>>> george_dupe['1973'] = 11
>>> george_dupe
1968    10
1969    6
1970    1
1970    22
1973    11
Name: George Songs, dtype: int64
```

Because an index operation either updates or appends, one must be aware of the data they are dealing with. Be careful if you intend to add a value with an index entry that already exists in the series. Assignment via an index operation to an existing index entry will overwrite previous entries.

Notice what happens when we try to update an index that has duplicate entries. Say we found an extra Beatles song in 1970 attributed to George, and wanted to update the entry that held 1 to 2:

```python
>>> george_dupe['1970'] = 2
>>> george_dupe
1968    10
1969    6
1970    2
1970    2
1973    11
Name: George Songs, dtype: int64
```
Both values for 1970 were set to 2. If you had to deal with data such as this, it would probably be better to use a data frame with a column for artist (i.e. Beatles, or George Harrison) or a multi-index (described later). To update values based purely on position, perform an index assignment of the `.iloc` attribute:

```python
>>> george_dupe.iloc[3] = 22
>>> george_dupe
1968    10
1969     6
1970     2
1970    22
1973     11
Name: George Songs, dtype: int64
```

Note

There is an `.append` method on the series object, but it does not behave like the Python list's `.append` method. It is somewhat analogous the Python list's `.extend` method in that it expects another series to append to:

```python
>>> george_dupe.append(pd.Series({'1974':9}))
1968    10
1969     6
1970     2
1970    22
1973     11
1974     9
dtype: int64
```

In this case, we keep the original series intact and a new Series object is returned as the result. Note that the name of the `george` series is not carried over into the new series.

The series object has a `.set_value` method that will *both* add a new item to the existing series and return a series:

```python
>>> george_dupe.set_value('1974', 9)
1968    10
1969     6
1970     2
1970    22
1973     11
1974     9
```
Deletion

Deletion is not common in the pandas world. It is more common to use filters or masks to create a new series that has only the items that you want. However, if you really want to remove entries, you can delete based on index entries.

Recent versions of pandas support the `del` statement, which deletes based on the index:

```python
>>> del george_dupe['1973']
```

```python
>>> george_dupe
1968    10
1969     6
1970     2
1970    22
1974     9
Name: George Songs, dtype: int64
```

Note

The `del` statement appears to have problems with duplicate index values (as of version 0.14.1):

```python
>>> s = pd.Series([2, 3, 4], index=[1, 2, 1])
>>> del s[1]
```

```python
>>> s
1    4
dtype: int64
```

One might assume that `del` would remove any entries with that index value. For some reason, it also appears to have removed index 2 but left the second index 1.

To delete values from a series, it is more common to filter the series to get a new series. Here is a basic filter that returns all values less than or equal to 2. The example below uses a boolean array inlined into the index operation. This is common in NumPy but not supported in normal Python lists or dictionaries:

```python
>>> george_dupe[george_dupe <= 2]
```
Summary

A Series doesn't just hold data. It allows you to get at the data, update it, or remove it. Often, we perform this operations through the index. We have just scratched the surface in this chapter. In future chapters, we will dive deeper into the Series.
Series Indexing

This section will discuss indexing best practices. As illustrated with our example series, the index does not have to be whole numbers. Here we use strings for the index:

```python
>>> george = pd.Series([10, 7],
...    index=['1968', '1969'],
...    name='George Songs')

>>> george
1968    10
1969     7
Name: George Songs, dtype: int64
```

George’s index type is object (pandas indicates that strings index entries are objects), note the dtype of the index attribute:

```python
>>> george.index
Index(['1968', '1969'], dtype='object')
```

We have previously seen that indexes do not have to be unique. To determine whether an index has duplicates, simply inspect the .is_unique attribute on the index:

```python
>>> dupe = pd.Series([10, 2, 7],
...    index=['1968', '1968', '1969'],
...    name='George Songs')

>>> dupe.index.is_unique
False

>>> george.index.is_unique
True
```

Much like numpy arrays, a Series object can be both indexed and sliced along the axis. Indexing pulls out either a scalar or multiple values (if there are non-unique index labels):

```python
>>> george
1968    10
1969     7
Name: George Songs, dtype: int64
```
The indexing rules are somewhat complex. They behave more like a dictionary, but in the case where a string index label (rather than integer based indexing) is used, the behavior falls back to Python list indexing. Yes, this is confusing. Some examples might help to clarify. The series `george` has non-numeric indexes:

```python
>>> george['1968']
10
```

This series can also be indexed by position (using integers) even though it has string index entries! The first item is at key `0`, and the last item is at key `-1`:

```python
>>> george[0]
10
>>> george[-1]
7
```

What is going on? Indexing with strings and integers!? Because this is confusing and in Python, “explicit is better than implicit”, the pandas documentation actually suggests indexing based off of the `.loc` and `.iloc` attributes rather than indexing the object directly:

> While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, `.at`, `.iat`, `.loc`, `.iloc` and `.ix.`

—pandas website

Note

As we have see, the result of an index operation may not be a scalar. If the index labels are not unique, it is possible that the index operation returns a sub-series rather than a scalar value:

```python
>>> dupe
```

This is a potential issue if you are assuming the result of your data to be only scalar and have duplicate labels in the index.

Note

If the index is already using integer labels, then the fallback to position based indexing does not work!

```python
>>> george_i = pd.Series([10, 7],
                        index=[1968, 1969],
                        name='George Songs')
>>> george_i[-1]
Traceback (most recent call last):
  ... KeyError: -1
```

.iloc and .loc

The optimized data access methods are accessed by indexing off of the .loc and .iloc attributes. These two attributes allow label-based and position-based indexing respectively.

When we perform an index operation on the .iloc attribute, it does lookup based on index position (in this case pandas behaves similar to a Python list). pandas will raise an IndexError if there is no index at that location:

```python
>>> george.iloc[0]
10
>>> george.iloc[-1]
7
```
In addition to pulling out a single item, we can slice just like in normal Python:

```python
>>> george.iloc[0:3]  # slice
1968    10
1969     7
Name: George Songs, dtype: int64
```

Additional functionality not found in normal Python is indexing based off of a list. You can pass in a list of index locations to the index operation:

```python
>>> george.iloc[[0,1]]  # list
1968    10
1969     7
Name: George Songs, dtype: int64
```

.loc is supposed to be based on the index labels and not the positions. As such, it is analogous to Python dictionary-based indexing. Though it has some additional functionality, as it can accept boolean arrays, slices, and a list of labels (none of which work with a Python dictionary):

```python
>>> george.loc['1968']
10

>>> george.loc['1970']
Traceback (most recent call last):
  ...:
  KeyError: 'the label ['1970'] is not in the [index]'

>>> george.loc[0]
Traceback (most recent call last):
  ...:
  TypeError: cannot do label indexing on <class 'pandas.indexes.base.Index'> with these indexers [0] of <class 'int'>

>>> george.loc[['1968', '1970']]  # list
1968    10.0
1970     NaN
Name: George Songs, dtype: float64
```
If you get confused by `.loc` and `.iloc`, remember that `.iloc` is based on the index (starting with i) position. `.loc` is based on label (starting with l).

Figure showing how `.iloc` and `.loc` behave.

.at and .iat

The `.at` and `.iat` index accessors are analogous to `.loc` and `.iloc`. The difference being that they will return a `numpy.ndarray` when pulling out a duplicate value, whereas `.loc` and `.iloc` return a `Series`:

```python
>>> george_dupe = pd.Series([10, 7, 1, 22],
                        name='George Songs')
>>> george_dupe.at['1970']
array([ 1, 22])
>>> george_dupe.loc['1970']
1970     1
1970    22
Name: George Songs, dtype: int64
```

.ix

`.ix` is similar to `[]` indexing. Because it tries to support both positional and label based indexing, I advise against its’ use in general. It tends to lead to confusing results and violates the notion that “explicit is better than implicit”:

```python
>>> george_dupe.ix[0]
```
The case where `.ix` turns out to be useful is given in the pandas documentation:

`.ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes.

If you are using pivot tables, or stacking (as described later), `.ix` can be useful. Note that the pandas documentation continues:

However, when an axis is integer based, only label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use `.iloc` or `.loc`.

Indexing Summary

The following table summarizes the indexing methods and offers advice as to when to use them:

<table>
<thead>
<tr>
<th>METHOD</th>
<th>WHEN TO USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute access</td>
<td>Getting values for a single index name when the name is a valid attribute name.</td>
</tr>
<tr>
<td>Index access</td>
<td>Getting/setting values for a single index name when the name is not a valid attribute names.</td>
</tr>
<tr>
<td><code>.iloc</code></td>
<td>Getting/setting values by index position or location. (Half-open interval for slices)</td>
</tr>
<tr>
<td><code>.loc</code></td>
<td>Getting/setting values by index label. (Closed interval for slices)</td>
</tr>
<tr>
<td><code>.ix</code></td>
<td>Getting/setting values by index label first, then falls back to position. Avoid unless you have hierarchical indexes that mix position and label indexes.</td>
</tr>
<tr>
<td><code>.iat</code></td>
<td>Getting/setting numpy array results by index position.</td>
</tr>
<tr>
<td><code>.at</code></td>
<td>Getting/setting numpy array results by index label.</td>
</tr>
</tbody>
</table>
Slicing

As mentioned, slicing can be performed on the index attributes—.iloc and .loc. Slicing attempts to pull out a range of index locations, and the result is a series, rather than a scalar item at a single index location (assuming unique index keys).

Slices take the form of [start]:[end][:stride] where start, end, and stride are integers and the square brackets represent optional values. The table below explains slicing possibilities for .iloc:

<table>
<thead>
<tr>
<th>Slice</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:1</td>
<td>First item</td>
</tr>
<tr>
<td>:1</td>
<td>First item (start default is 0)</td>
</tr>
<tr>
<td>:-2</td>
<td>Take from the start up to the second to last item</td>
</tr>
<tr>
<td>::2</td>
<td>Take from start to the end skipping every other item</td>
</tr>
</tbody>
</table>

The following example returns the values found at index position zero up to but not including index position two:

```python
>>> george.iloc[0:2]
1968    10
1969     7
Name: George Songs, dtype: int64
```

Boolean Arrays

A slice using the result of a boolean operation is called a boolean array. It returns a filtered series for which the boolean operation is evaluated. Below a boolean array is assigned to a variable—mask:

```python
>>> mask = george > 7
```

```python
>>> mask
1968    True
1969    False
Name: George Songs, dtype: bool
```
Boolean arrays might be confusing for programmers used to Python, but not NumPy. Taking a series and applying an operation to each value of the series is known as *broadcasting*. The > operation is broadcasted, or applied, to every entry in the series. And the result is a new series with the result of each of those operations. Because the result of applying the greater than operator to each value returns a boolean, the final result is a new series with the same index labels as the original, but each value is True or False. This is referred to as a boolean array.

We can perform other broadcasting operations to a series. Here we increment the numerical values by adding two to them:

```python
>>> george + 2
1968    12
1969     9
Name: George Songs, dtype: int64
```

When the mask is combined with an index operation, it returns a Series where only the items in the same position as True are returned:

```python
>>> george[mask]
1968    10
Name: George Songs, dtype: int64
```
Masks

```
mask = george > 7
```

Figure showing creation and application of a mask to a Series. (Note that the mask itself is a Series as well).

Multiple boolean operations can be combined with the following operations:

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>And</td>
<td><code>ser[a & b]</code></td>
</tr>
<tr>
<td>Or</td>
<td>`ser[a</td>
</tr>
<tr>
<td>Not</td>
<td><code>ser[-a]</code></td>
</tr>
</tbody>
</table>

A potential gotcha with boolean arrays is operator precedence. If the masks are inlined into the index operation, it is best to surround them with parentheses. Below are non-inlined masks which function fine:

```python
>>> mask2 = george <= 2
>>> george[mask | mask2]
1968    10
37
```
Yet, when the mask operation is inlined, we encounter problems. Below is an example where operator precedence does not raise an error (it used to prior to 0.14), but is wrong! We asked for song count greater than seven or less than or equal to 2:

```python
>>> george[mask | george <= 2]
1968    10
1969     7
Name: George Songs, dtype: int64
```

By wrapping the masks in parentheses, the correct order of operations is used, and the result is correct:

```python
>>> george[mask | (george <= 2)]
1968    10
1969     7
Name: George Songs, dtype: int64
```

Tip

If you inline boolean array operations, make sure to surround them with parentheses.

Summary

In this chapter, we looked at the index. Through index operations, we can pull values out of a series. Because you can pull out values by both position and label, indexing can be a little complicated. Using `.loc` and `.iloc` allow you to be more explicit about indexing operations. We can also use **slicing** to pull out values. This is a powerful construct that allows use to be succinct in our code. In addition, we can also use **boolean arrays** to filter data.

Note that the operations in this chapter also apply to **DataFrames**. In future chapters we will see their application. In the next chapter, we will examine some of the powerful methods that are built-in to the **Series** object.

8 - http://pandas.pydata.org/pandas-docs/stable/10min.html
Series Methods

A Series object has many attributes and methods that are useful for data analysis. This section will cover a few of them.

In general, the methods return a new Series object. Most of the methods returning a new instance also have an inplace or a copy parameter. This is because the default behavior tends towards immutability, and these optional parameters default to False and True respectively.

Note

The inplace and copy parameters are the logical complement of each other. Luckily, a method will only take one of them. This is one of those slight inconsistencies found in the library. In practice, immutability works out well and both of these parameters can be ignored.

The examples in this chapter will use the following series. They contain the count of Beatles songs attributed to individual band members in the years 1966 and 1969:

```python
>>> songs_66 = pd.Series([3, None, 11, 9],
                   index=['George', 'Ringo', 'John', 'Paul'],
                   name='Counts')
>>> songs_69 = pd.Series([18, 22, 7, 5],
                   index=['John', 'Paul', 'George', 'Ringo'],
                   name='Counts')
```

Iteration

Iteration over a series iterates over the values:
>>> for value in songs_66:
... print(value)
3.0
nan
11.0
9.0

There is an .iteritems method to loop over the index, value pairs:

>>> for idx, value in songs_66.iteritems():
... print(idx, value)
George 3.0
Ringo nan
John 11.0
Paul 9.0

Note

Python supports *unpacking* or *destructuring* during variable assignment, which includes iteration (as seen in the example above). The .iteritems method returns a sequence of index, value tuples. By using unpacking, we can immediately put them each in their own variables.

If Python did not support this feature, we would have to create an intermediate variable to hold the tuple (which works but adds a few more lines of code):

```python
>>> for items in songs_66.iteritems():
...     idx = items[0]
...     value = items[1]
...     print(idx, value)
George 3.0
Ringo nan
John 11.0
Paul 9.0
```

A .keys method is provided as a shortcut to the index as well:

```python
>>> for idx in songs_66.keys():
...     print(idx)
George
Ringo
John
Paul
```

Unlike the .keys method of a Python dictionary, the result is ordered.

Overloaded operations
The table below lists *overloaded* operations for a Series object. The operations behave in a special way for pandas objects that might be different than other Python objects respond to these operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Adds scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>-</td>
<td>Subtracts scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>/</td>
<td>Divides scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>//</td>
<td>“Floor” Divides scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>*</td>
<td>Multiplies scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>%</td>
<td>Modulus scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>==, !=</td>
<td>Equality scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>>, <</td>
<td>Greater/less than scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>>=, <=</td>
<td>Greater/less than or equal scalar (or series with matching index values) returns Series</td>
</tr>
<tr>
<td>^</td>
<td>Binary XOR returns Series</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>Binary AND returns Series</td>
</tr>
</tbody>
</table>

The common arithmetic operations for a series are overloaded to work with both scalars and other series objects. Addition with a scalar (assuming numeric values in the series) simply adds the scalar value to the values of the series. Adding a scalar to a series is called *broadcasting*:

```python
>>> songs_66 + 2
George     5.0
Ringo      NaN
John      13.0
Paul      11.0
Name: Counts, dtype: float64
```
Note

Broadcasting is a NumPy and pandas feature. A normal Python list supports some of the operations listed in the prior table, but not in the elementwise manner that NumPy and pandas objects do. When you multiply a Python list by two, the result is a new list with the elements repeated, not each element multiplied by two:

```python
>>> [1, 3, 4] * 2
[1, 3, 4, 1, 3, 4]
```

To multiply every element in a list by two using idiomatic Python, one would use a list comprehension:

```python
>>> [x*2 for x in [1, 3, 4]]
[2, 6, 8]
```

Addition with two series objects adds only those items whose index occurs in both series, otherwise it inserts a NaN for index values found only in one of the series. Note that though Ringo appears in both indices, he has a value of NaN in songs_66 (leading to NaN as the result of the addition operation):

```python
>>> songs_66 + songs_69
George     10.0
John       29.0
Paul       31.0
Ringo      NaN
Name: Counts, dtype: float64
```

Note

The above result might be problematic. Should the count of Ringo songs really be unknown? In this case, we use the fillna method to replace NaN with zero and give us a better answer:

```python
>>> songs_66.fillna(0) + songs_69.fillna(0)
George     10.0
John       29.0
Paul       31.0
Ringo      5.0
Name: Counts, dtype: float64
```
The other arithmetic operations behave similarly for -, *, and /.

Multiplying song counts for two years really doesn’t make sense, but pandas supports it:

```python
>>> songs_66 - songs_69
George    -4.0
John      -7.0
Paul     -13.0
Ringo      NaN
Name: Counts, dtype: float64
```

```python
>>> songs_66 * songs_69
George     21.0
John      198.0
Paul      198.0
Ringo       NaN
Name: Counts, dtype: float64
```

Getting and Setting Values

The series object allows for access to values by index operations (with `.loc` and `.iloc`) and convenience methods. The methods for getting and setting values at index labels are listed in the table below:

<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get(label, [default])</code></td>
<td>Returns a scalar (or Series if duplicate indexes) for label or default on failed lookup.</td>
</tr>
<tr>
<td><code>get_value(label)</code></td>
<td>Returns a scalar (or Series if duplicate indexes) for label</td>
</tr>
<tr>
<td><code>set_value(label, value)</code></td>
<td>Returns a new Series with label and value inserted (or updated)</td>
</tr>
</tbody>
</table>

Let’s examine getting and setting data with both operations:

```python
>>> songs_66
George     3.0
Ringo      NaN
John      11.0
Paul       9.0
Name: Counts, dtype: float64
```

```python
>>> songs_66['John']
11.0
```

```python
>>> songs_66.get_value('John')
11.0
```
There is another trick up pandas’ sleeve. It supports dotted attribute access for index names that are valid attribute names (and don’t conflict with pre-existing series attributes):

```python
>>> songs_66.John
11.0
```

Note

Valid attribute names are names that begin with letters, and contain alphanumerics or underscores. If an index name contains spaces, you couldn’t use dotted attribute access to read it, but index access would work fine:

```python
>>> songs_lastname = pd.Series([3, 11],
...     index=['George H', 'John L'])
```

```python
>>> songs_lastname.George H
Traceback (most recent call last):
    songs_lastname.George H
^  
SyntaxError: invalid syntax
```

```python
>>> songs_lastname['George H']
3
```

If an index name conflicts with an existing series method or attribute, dotted access fails:

```python
>>> nums = pd.Series([4, 10],
...     index=['count', 'median'])
```

```python
>>> nums.count
<bound method Series.count of count
median
   10
dtype: int64>
```

```python
>>> nums['count']
4
```

Dotted attribute access is a handy shortcut to eliminate a few keystrokes, but if your aren’t careful, you might get unexpected results. Index operations, on the other hand, should always work.
As a convenience, .get (similar to .get on a native Python dictionary) is provided. It provides an optional parameter to return should the lookup fail:

```python
g>>> songs_66.get('Fred', 'missing')
'missing'
```

The .get_value method raises an exception if the index value is missing:

```python
g>>> songs_66.get_value('Fred')
Traceback (most recent call last):
...  
  KeyError: 'Fred'
```

There are various mechanisms to perform assignment on a pandas series. Assignment that occurs with .__setitem__ updates the series in place, but does not return a series:

```python
g>>> songs_66['John'] = 82
>>> songs_66['John']
82.0
```

Dotted attribute setting works as well, given a valid attribute name:

```python
g>>> songs_66.John = 81
>>> songs_66.John
81.0
```

Note

The Python language gives you great flexibility. But with that flexibility comes responsibility. Paraphrasing Spiderman here, but because dotted attribute setting is possible, one can overwrite some of the methods and attributes of a series.

Below is a series that has various index names. normal is a perfectly valid name. median is a fine name, but is also the name of the method for calculating the median. class is another name that would be fine if wasn’t a reserved name in Python. The final is the name of series attribute that pandas tries to protect:

```python
g>>> ser = pd.Series([1, 2, 3, 4],
...     index=['normal', 'median', 'class', 'index'])
```
We can overwrite the first two index names:

```python
>>> ser.normal = 4
>>> ser.median = 5
```

But trying to overwrite the reserved word throws an error:

```python
>>> ser.class = 6
Traceback (most recent call last):
  ... ser.class = 6
^ SyntaxError: invalid syntax
```

Setting the index index also fails:

```python
>>> ser.index = 7
Traceback (most recent call last):
  ... TypeError: Index(...) must be called with a collection of some kind, 7 was passed
```

When you go back to access the values you might be surprised. Only `normal` was updated. The write to `median` silently failed:

```python
>>> ser
normal    4
median    2
class     3
index     4
dtype: int64
```

My recommendation is to stay away from dotted attribute setting.

If you are new to Python and not familiar with the keywords, the module `keyword` has a `kwlist` attribute. This attribute is a list containing all the current keywords for Python:

```python
>>> import keyword
>>> print(keyword.kwlist)
['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']
```

The `.set_value` method updates the series in place and returns a series.
Also, `set_value` will update all the values for a given index. If you have non-unique indexes and only want to update one of the values for a repeated index, this cannot be done via `set_value`.

Tip

One way to update only one value for a repeated index label is to update by position. The following series repeats the index label 1970:

```python
>>> george = pd.Series([10, 7, 1, 22],
                      name='George Songs')
```

To update only the first value for 1970, use the `.iloc` index assignment:

```python
>>> george.iloc[2] = 3
>>> george
1968    10
1969     7
1970     3
1970    22
Name: George Songs, dtype: int64
```

A quick method of to retrieve the index positions for values is to use a list comprehension on the `.iteritems` method in combination with the built-in `enumerate` function:

```python
>>> [pos for pos, x in enumerate(george.iteritems()) \n   if x[0] == '1970']
[2, 3]
```
Reset Index

Because selection, plotting, joining, and other methods can be determined by the index, often it is useful to change the values of the index. We will examine a few of the methods to reset the index, change which index labels are present, and rename the labels of the index. The first, `.reset_index`, will reset the index to monotonically increasing integers starting from zero. By default, the `.reset_index` method will return a new data frame (not a series). It moves the current index values to a column named `index`:

```python
>>> songs_66.reset_index()
   index  Counts
      0  George     3.0
      1   Ringo     NaN
      2    John    80.0
      3    Paul     9.0
```

To get a series out, pass `True` to the `drop` parameter, which will drop the index column:

```python
>>> songs_66.reset_index(drop=True)
  0     3.0
  1     NaN
  2    80.0
  3     9.0
Name: Counts, dtype: float64
```

If a specific index order is desired, it may be passed to the `.reindex` method. The index of the result will be conformed to the index passed in. New index values will have a value of the optional parameter `fill_value` (which defaults to `NaN`):

```python
>>> songs_66.reindex(['Billy', 'Eric', 'George', 'Yoko'])
   Billy    NaN
   Eric    NaN
  George    3.0
   Yoko    NaN
Name: Counts, dtype: float64
```

Alternatively, the values of the index can be updated with the `.rename` method. This method accepts either a dictionary mapping index labels to new labels, or a function that accepts a label and returns a new one:

```python
>>> songs_66.rename({'Ringo': 'Richard'})
```
As a poor-man's solution, the `index` attribute can be changed under the covers. This works as well, and pandas will convert a list into an actual `Index` object. The problem with such interactions is that it is treating the series as mutable, when most methods do not. In the author’s opinion, it is safer to use the methods described above:

```python
>>> idx = songs_66.index
>>> idx
Index(['George', 'Ringo', 'John', 'Paul'], dtype='object')

>>> idx2 = range(len(idx))
>>> list(idx2)
[0, 1, 2, 3]

>>> songs_66.index = idx2
>>> songs_66
0    3.0  
1    NaN  
2    80.0 
3     9.0  
Name: Counts, dtype: float64

>>> songs_66.index
RangeIndex(start=0, stop=4, step=1)
```

Note

The above code explicitly calls the `list` function on `idx2` because the author is using Python 3 in the examples in this book. In Python 3, `range` is an *iterable* that does not materialize the contents of the sequence until it is iterated over. It behaves similar to Python 2's `xrange` built-in.

This code (as with most of the code in this book) will still work in Python 2.
Counts

This section will explore how to get an overview of the data found in a series. For the following examples we will use two series. The songs_66 series:

```python
>>> songs_66 = pd.Series([3, None, 11, 9],
...     index=['George', 'Ringo', 'John', 'Paul'],
...     name='Counts')
>>> songs_66
George     3.0
Ringo      NaN
John      11.0
Paul       9.0
Name: Counts, dtype: float64
```

And the scores_2 series:

```python
>>> scores2 = pd.Series([67.3, 100, 96.7, None, 100],
...     index=['Ringo', 'Paul', 'George', 'Peter', 'Billy'],
...     name='test2')
>>> scores2
Ringo     67.3
Paul      100.0
George    96.7
Peter     NaN
Billy     100.0
Name: test2, dtype: float64
```

A few methods are provided to get a feel for the counts of the entries, how many are unique, and how many are duplicated. Given a series, the `.count` method returns the number of non-null items. The scores2 series has 5 entries but one of them is `None`, so `.count` only returns 4:

```python
>>> scores2.count()
4
```

Histogram tables are easy to generate in pandas. The `.value_counts` method returns a series indexed by the values found in the series. If you think of a series as an ordered mapping of index keys to values, `.value_counts` returns a mapping of those values to their counts, ordered by frequency:

```python
>>> scores2.value_counts()
100.0    2
67.3     1
```
96.7 1
Name: test2, dtype: int64

To get the unique values or the count of non-NaN items use the .unique and .nunique methods respectively. Note that .unique includes the nan value, but .nunique does not count it:

```python
>>> scores2.unique()
array([  67.3,  100. ,   96.7,    nan])
```

```python
>>> scores2.nunique()
3
```

Dealing with duplicate values is another feature of pandas. To drop duplicate values use the .drop_duplicates method. Since Billy has the same score as Paul, he will get dropped:

```python
>>> scores2.drop_duplicates()
   Ringo    67.3
   Paul    100.0
   George   96.7
   Peter   NaN
Name: test2, dtype: float64
```

To retrieve a series with boolean values indicating whether its value was repeated, use the .duplicated method:

```python
>>> scores2.duplicated()
Ringo   False
Paul    False
George  False
Peter   False
Billy   True
Name: test2, dtype: bool
```

To drop duplicate index entries requires a little more effort. Lets create a series, scores3, that has 'Paul' in the index twice. If we use the .groupby method, and group by the index, we can then take the first or last item from the values for each index label:

```python
>>> scores3 = pd.Series([67.3, 100, 96.7, None, 100, 79],
...                      index=['Ringo', 'Paul', 'George', 'Peter', 'Billy', 'Paul'])
>>> scores3.groupby(scores3.index).first()
Billy   100.0
George   96.7
Paul    100.0
Peter   NaN
Ringo   67.3
dtype: float64
```
>>> scores3.groupby(scores3.index).last()
Billy 100.0
George 96.7
Paul 79.0
Peter NaN
Ringo 67.3
dtype: float64

Statistics

There are many basic statistical measures in a series object’s methods. We will look at a few of them in this section.

One of the most basic measurements is the sum of the values in a series:

>>> songs_66.sum()
23.0

Note

Most of the methods that perform a calculation ignore NaN. Some also provide an optional parameter—skipna—to change that behavior. But in practice if you do not ignore NaN, the result is nan:

>>> songs_66.sum(skipna=False)
nan

Calculating the mean (the “expected value” or average) and the median (the “middle” value at 50% that separates the lower values from the upper values) is simple. As discussed, both of these methods ignore NaN (unless skipna is set to False):

>>> songs_66.mean()
7.666666666666667

>>> songs_66.median()
9.0

For non-normal distributions, the median is useful as a summary measure. It is more resilient to outliers. In addition, quantile measures can be used to predict the 50% value (the default) or any level desired, such as the 10th and 90th percentile. The default quantile calculation should be very similar to the median:
To get a good overall feel for the series, the `describe` method presents a good number of summary statistics and returns the result as a series. It includes the count of values, their mean, standard deviation, minimum and maximum values, and the 25%, 50%, and 75% quantiles:

```python
>>> songs_66.describe()
count    3.000000
mean     7.666667
std      4.163332
min      3.000000
25%      6.000000
50%      9.000000
75%      10.000000
max      11.000000
Name: Counts, dtype: float64
```

You can pass in specific percentiles if you so desire with the `percentiles` parameter:

```python
>>> songs_66.describe(percentiles=[.05, .1, .2])
count    3.000000
mean     7.666667
std      4.163332
min      3.000000
5%       3.600000
10%      4.200000
20%      5.400000
50%      9.000000
max      11.000000
Name: Counts, dtype: float64
```

The series also has methods to find the minimum and maximum for the values, `.min` and `.max`. In addition, there are methods to get the index location of the minimum and maximum index labels, `.idxmin` and `.idxmax):

```python
>>> songs_66.min()
3.0

>>> songs_66.idxmin()
'George'

>>> songs_66.max()
11.0
```
The rest of this section briefly lists other statistical measures. Wikipedia is a great resource for a more thorough explanation of these. As statisticians tend to be precise, the articles found there are well curated.

Though the minimum and maximum are interesting values, often they are outliers. In that case, it is useful to find the spread of the values taking into account the notion of outliers. *Variance* is one of these measures. A low variance indicates that most of the values are close to the mean:

```python
>>> songs_66.var()
17.333333333333329
```

The square root of the variance is known as the *standard deviation*. This is also a common measure to indicate spread from the mean. In a normal distribution, 99% of the values will be within three standard deviations above and below the mean:

```python
>>> songs_66.std()
4.1633319989322652
```

Another summary statistic for describing dispersion is the *mean absolute deviation*. In pandas this is calculated by averaging the absolute values of the difference between the mean and the values:

```python
>>> songs_66.mad()
3.1111111111111107
```

Skew is a summary statistic that measures how the tails behave. A normal distribution should have a skew around 0. A negative skew indicates that the left tail is longer, whereas a positive skew indicates that the right tail is longer. Below is a plot of the histogram:

```python
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> songs_66.hist(ax=ax)
>>> fig.savefig('/tmp/song-hist.png')
```
A histogram that illustrates negative skew

In this case the sample size is so low that it is hard to say much about the data. But the numbers say a negative skew:

```python
>>> songs_66.skew()
-1.293342780733397
```

Kurtosis is a summary measure that describes how narrow the “peak” of is distribution is. The larger the number, the narrower the peak is. Normally, this value is reported alongside skew. The `.kurt` method returns `nan` if there are fewer than four numbers:

```python
>>> songs_66.kurt()
nan
```

Covariance is a measure of how two variables change together. If they tend to increase together, it will be positive. If one tends to decrease while the other increases, it will be negative:

```python
>>> songs_66.cov(songs_69)
28.333333333333332
```
When the covariance is normalized (by dividing by the standard deviations of both series), it is called the correlation coefficient. The \texttt{.corr} method gives the \textit{Pearson Correlation Coefficient}. This value is a number from -1 to 1. The more positive this value is, the greater the correlation. The more negative it is, the greater the inverse correlation. A value of zero indicates no correlation:

```python
>>> songs_66.corr(songs_69)
0.87614899364978038
```

The \textit{autocorrelation} measure describes the correlation of a series with itself shifted one position. 1 indicates perfect correlation, and -1 indicates anti-correlation. Here is another case where the sample size is small, so take these with a grain of salt. Note that \texttt{.autocorr} does not ignore NaN by default:

```python
>>> songs_66.autocorr()
nan
>>> songs_66.dropna().autocorr()
-0.99999999999999989
```

The first discrete difference of a series is available as well:

```python
>>> songs_66.diff()
George    NaN
Ringo     NaN
John      NaN
Paul     -2.0
Name: Counts, dtype: float64
```

Often, the cumulative sum of a series is needed. The \texttt{.cumsum} method provides this. In addition, there are analogous operations for cumulative product and cumulative minimum:

```python
>>> songs_66.cumsum()
George     3.0
Ringo      NaN
John      14.0
Paul      23.0
Name: Counts, dtype: float64

>>> songs_66.cumprod()
George     3.0
Ringo      NaN
John      33.0
Paul     297.0
Name: Counts, dtype: float64
```
```python
>>> songs_66.cummin()
George    3.0
Ringo     NaN
John      3.0
Paul      3.0
Name: Counts, dtype: float64

Convert Types

The series object has the ability to tweak its values. The numerical values in a series may be rounded up to the next whole floating point number by using the `.round` method:

```python
>>> songs_66.round()
George 3.0
Ringo NaN
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

Note that even though the value is rounded, the type is still a float.

Numbers can be clipped between lower and upper thresholds using the `.clip` method. This method does not change the type either:

```python
>>> songs_66.clip(lower=80, upper=90)
George 80.0
Ringo NaN
John 80.0
Paul 80.0
Name: Counts, dtype: float64
```

The `.astype` method attempts to convert values to the type passed in. In the instance below, the float values are being converted to strings. To the unwary, there does not appear to be much change other than the `dtype` changing to `object`:

```python
>>> songs_66.astype(str)
George 3.0
Ringo
John 11.0
Paul 9.0
Name: Counts, dtype: object
```

But, if a method is invoked on the converted string values, the result might not be the desired output. In this case `.max` now returns the lexicographic maximum:

```python
>>> songs_66.astype(str).max()
'nan'
```
There is also a .convert_objects method in pandas that behaves similarly to .astype, but it has been deprecated, as of version 0.17. The current recommendation for type conversion is to use the following methods:

<table>
<thead>
<tr>
<th><strong>Final Type</strong></th>
<th><strong>Method</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>use .astype(str)</td>
</tr>
<tr>
<td>numeric</td>
<td>use pd.to_numeric</td>
</tr>
<tr>
<td>integer</td>
<td>use .astype(int), note that this will fail with NaN</td>
</tr>
<tr>
<td>datetime</td>
<td>use pd.to_datetime</td>
</tr>
</tbody>
</table>

By default, the to_* functions will raise an error if they cannot coerce. In the case below, the to_numeric function cannot convert nan to a float. This is slightly annoying:

```python
>>> pd.to_numeric(songs_66.apply(str))
Traceback (most recent call last):
...
ValueError: Unable to parse string
```

Luckily, the to_numeric function has an errors parameter, that when passed 'coerce' will fill in with NaN if it cannot coerce:

```python
>>> pd.to_numeric(songs_66.astype(str), errors='coerce')
George 3.0
Ringo NaN
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

The to_datetime function also behaves similarly, and also raises errors when it fails to coerce:

```python
Traceback (most recent call last):
...
ValueError: Unknown string format
```

If we pass errors='coerce', we can see that it supports many formats if, but not Spanish:
Dealing with None

As mentioned previously, the NaN value is usually disregarded in calculations. Sometimes, it is useful to fill them in with another value. The .fillna method will replace them with a given value, -1 in this case:

```python
>>> songs_66.fillna(-1)
George 3.0
Ringo -1.0
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

NaN values can be dropped from the series using .dropna:

```python
>>> songs_66.dropna()
George 3.0
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

Another way to get the non-NaN values (or the complement) is to create a boolean array of the values that are not NaN. With this array in hand, we can use it to mask the series. The .notnull method gives us this boolean array:

```python
>>> val_mask = songs_66.notnull()
>>> val_mask
George True
Ringo False
John True
Paul True
Name: Counts, dttype: bool
```

```python
>>> songs_66[val_mask]
George 3.0
John 11.0
Paul 9.0
Name: Counts, dttype: float64
```

If we want the mask for the NaN positions, we can use .isnull:
>>> nan_mask = songs_66.isnull()

>>> nan_mask
George    False
Ringo      True
John      False
Paul      False
Name: Counts, dtype: bool

>>> songs_66[nan_mask]
Ringo   NaN
Name: Counts, dtype: float64

**NOTE**

We can flip a boolean mask by applying the not operator (~):

```python
>>> ~nan_mask
George True
Ringo False
John True
Paul True
Name: Counts, dtype: bool
```

So, `songs_66.isnull()` is equivalent to `~songs_66.notnull()`.

Locating the position of the first and last valid index values is simple as well, using the `.first_valid_index` and `.last_valid_index` methods respectively:

```python
>>> songs_66.first_valid_index()
'George'

>>> songs_66.last_valid_index()
'Paul'
```

**Matrix Operations**

Computing the dot product is available through the `.dot` method. But, this method fails if NaN is part of the series:

```python
>>> songs_66.dot(songs_69)
nan
```

Removing NaN will give a value for `.dot`:

```python
>>> songs_66.dropna().dot(songs_66.dropna())
211.0
```
A series also has a `.transpose` method (alternatively invoked as the T property) that is actually a no-op and just returns the series. (In the two dimensional data frame, the columns and rows are transposed):

```python
>>> songs_66.T
George 3.0
Ringo NaN
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

```python
>>> songs_66.transpose()
George 3.0
Ringo NaN
John 11.0
Paul 9.0
Name: Counts, dtype: float64
```

**Append, combining, and joining two series**

To concatenate two series together, simply use the `.append` method. Unlike the `.append` method of a Python list which takes a single item to be appended to the list, this method takes another Series object as its’ parameter:

```python
>>> songs_66.append(songs_69)
George 3.0
Ringo NaN
John 11.0
Paul 9.0
John 18.0
Paul 22.0
George 7.0
Ringo 5.0
Name: Counts, dtype: float64
```

The `.append` method will create duplicate indexes by default (as seen by the multiple entries for Paul above). `.append` has an optional parameter, `verify_integrity`, which when set to `True` to complain if index values are duplicated:

```python
>>> songs_66.append(songs_69, verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: ['George', 'John', 'Paul', 'Ringo']
```

To perform element-wise operations on series, use the `.combine` method. It takes another series, and a function as its’ parameters. The
function should accept two parameters and perform a reduction on them. Below is one way to compute the average of two series using `.combine`:

```python
>>> def avg(v1, v2):
... return (v1 + v2)/2.0

>>> songs_66.combine(songs_69, avg)
George 5.0
John 14.5
Paul 15.5
Ringo NaN
Name: Counts, dtype: float64
```

To update values from one series, use the `.update` method. It accepts a new series and will return a series that has replaced the values using the passed in series:

```python
>>> songs_66.update(songs_69)

>>> songs_66
George 7.0
Ringo 5.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64
```

**Note**

`.update` is another method that is an anomaly from most other pandas methods. It behaves similarly to the `.update` method of a native Python dictionary—it *does not return anything* and *updates the values in place*. Tread with caution.

The `.repeat` method simply repeats every item a desired amount:

```python
>>> songs_69.repeat(2)
John 18
John 18
Paul 22
Paul 22
George 7
George 7
Ringo 5
Ringo 5
Name: Counts, dtype: int64
```

**Sorting**
There are various methods for sorting that we will examine. Be careful with the `.sort` method. This method provides an in-place sort based on the values. If you are merrily programming along, and re-assigning the series object with each method invocation (due to the general immutability of Series), this will fail. This method has no return value, and is provided to have some compatibility with NumPy:

```python
>>> songs_66
George 7.0
Ringo 5.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64

>>> orig = songs_66.copy()

>>> songs_66.sort()
>>> songs_66
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64
```

As the `.sort` method behaves differently from most pandas methods, it has been deprecated in version 0.17. The suggested replacement is the `.sort_values` method. That method returns a new series:

```python
>>> orig.sort_values()
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64
```

**Note**

The `.sort_values` exposes a kind parameter. The default value is 'quicksort', which is generally fast. Another option to pass to kind is 'mergesort'. When this is passed, `.sort_values` performs a **stable sort** (so that items that sort in the same position will not move relative to one another) when this method is invoked. Here's a small example:

```python
>>> s = pd.Series([2, 2, 2], index=['a2', 'a1', 'a3'])
```
Note that a *mergesort* does not re-arrange items that are already ordered correctly (in this case everything is already ordered):

```python
>>> s.sort_values(kind='mergesort')
a2 2
a1 2
a3 2
dtype: int64
```

Other sorting kinds might re-order rows (see that a2 is moved to the bottom in this heapsort example):

```python
>>> s.sort_values(kind='heapsort')
a1 2
a3 2
a2 2
dtype: int64
```

Note that it is possible that a heapsort (or any non-mergesort) might not re-arrange the ordered rows, but consider this luck, and don't rely on that behavior if you need a stable sort.

This `.sort_values` method also supports the `ascending` parameter that flips the order of the sort:

```python
>>> songs_66.sort_values(ascending=False)
Paul 22.0
John 18.0
George 7.0
Ringo 5.0
Name: Counts, dtype: float64
```

**Note**

The `.order` method in pandas is similar to `.sort` and `.sort_values`. It is deprecated as of 0.18, so please use `.sort_values` instead.

The `.sort_index` method does not operate in place and returns a new series. It has an optional parameter, `ascending` that will reverse the index if desired:

```python
>>> songs_66.sort_index()
George 7.0
John 18.0
```
Another useful sorting related method is `.rank`. This method ranks the index by the values of the entries. It assigns equal weights for ties. It also supports the `ascending` parameter to reverse the order:

```python
>>> songs_66.rank()
Ringo 1.0
George 2.0
John 3.0
Paul 4.0
Name: Counts, dtype: float64
```

**Applying a function**

Often the values in a series will need to be altered, cleaned up, checked, or have an arbitrary function applied to them. The `.map` method applies a function to every item in the series. Below is a function, `format`, that creates a string that appends `song` or `songs` to the number depending on the count:

```python
>>> def format(x):
... if x == 1:
... template = '{} song'
... else:
... template = '{} songs'
... return template.format(x)
```

```python
>>> songs_66.map(format)
Ringo 5.0 songs
George 7.0 songs
John 18.0 songs
Paul 22.0 songs
Name: Counts, dtype: object
```

In addition to accepting a function, the `.map` function also accepts a dictionary. In that case, any value of the series matching a key in the dictionary will be updated to the corresponding value for the key:

```python
>>> songs_66.map({5: None,
... 18.: 21,
... 22.: 23})
```
Similarly, the .map will accept a series, treating it much like a dictionary. Any value of the series that matches the passed in index value will be updated to the corresponding value:

```python
>>> mapping = pd.Series({22.: 33})
>>> mapping
22.0 33
dtype: int64

>>> songs_66.map(mapping)
Ringo NaN
George NaN
John NaN
Paul 33.0
Name: Counts, dtype: float64
```

There is also an .apply method on the series object. It behaves very similar to .map, but it only works with functions (not with series nor dictionaries).

**Serialization**

We have seen examples that create a Series object from a list, a dictionary, or another series. In addition, a series will serialize to and from a CSV file.

To save a series as a CSV file, simply pass a file object to the .to_csv method. The following example shows how this is done with a StringIO object (it implements the file interface, but allows us to easily inspect the results):

```python
>>> from io import StringIO
>>> fout = StringIO()
>>> songs_66.to_csv(fout)
>>> print(fout.getvalue())
Ringo,5.0
George,7.0
John,18.0
Paul,22.0
```

**Note**
Some of the intentions of Python 3 were to make things consistent and clean up warts or annoyances in Python 2. Python 3 created an io module to handle reading and writing from streams. In Python 2 the import above should be:

```python
>>> from StringIO import StringIO
```

To use a real file, the current best practice in Python is to use a context manager. This will automatically close the file for you when the indented block exits:

```python
>>> with open('/tmp/songs_66.csv', 'w') as fout:
... songs_66.to_csv(fout)
```

Upon closer examination of the serialized output, we see that the headers are missing. Pass in the header=True parameter to include headers in the output:

```python
>>> fout = StringIO()
>>> songs_66.to_csv(fout, header=True)
>>> print(fout.getvalue())
,Counts
Ringo,5.0
George,7.0
John,18.0
Paul,22.0
```

As shown above, now the label for the index is missing. To remedy that, use the index_label parameter:

```python
>>> fout = StringIO()
>>> songs_66.to_csv(fout, header=True, index_label='Name')
>>> print(fout.getvalue())
Name,Counts
Ringo,5.0
George,7.0
John,18.0
Paul,22.0
```

**Note**
The name of the series must be specified for the header of the values to appear. This can be passed in as a parameter during creation. Alternatively you can set the .name attribute of the series.
Below is a buggy attempt to create a series from a CSV file, using the .from_csv method:

```python
>>> fout.seek(0)
>>> series = pd.Series.from_csv(fout)
>>> series
Name Counts
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
dtype: object
```

In this case, the values of the series are strings (notice the dtype: object). This is because the header was parsed as a value, and not as a header. The pandas parsing code was not able to coerce test2 into a numerical value, and assumed the column had string values. Here is a second attempt that reads it the data as numerics and uses line zero as the header:

```python
>>> fout.seek(0)
>>> series = pd.Series.from_csv(fout, header=0)
>>> series
Name
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64
```

Note that the .name attribute is recovered as well:

```python
>>> series.name
'Counts'
```

**Note**

In practice, when dealing with data frames, the read_csv function is used, rather than invoking the .from_csv classmethod on Series or DataFrame. The result of this function is a DataFrame rather than a Series:

```python
>>> fout.seek(0)
>>> df = pd.read_csv(fout, index_col=0)
>>> df
```
We can pull the `Counts` column out of the `df` data frame to create a Series. The `Counts` column contains floats now as the `read_csv` function expects header columns by default (unlike the series method), and tries to figure out types:

```python
>>> df['Counts']
Name
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
Name: Counts, dtype: float64
```

**String operations**

A series that has string data can be manipulated by *vectorized string operations*. Though it is possible to accomplish these same operations via the `.map` or `.apply` methods, prudent users will first look to see if a built-in method is provided. Typically, built-in methods will be faster because they are vectorized and often implemented in Cython, so there is less overhead. Using `.map` and `.apply` should be thought of as a last resort, instead of the first tool you reach for.

To invoke the string operations, simply invoke them on the `.str` attribute of the series:

```python
>>> names = pd.Series(['George', 'John', 'Paul'])
>>> names.str.lower()
0 george
1 john
2 paul
dtype: object
```

```python
>>> names.str.findall('o')
0 [o]
1 [o]
2 []
dtype: object
```
As noted, the previous operations are also possible using the `.apply` method, though the vectorized operations are faster:

```python
>>> def lower(val):
... return val.lower()

>>> names.apply(lower)
0 george
1 john
2 paul
dtype: object
```

The following vectorized string methods are available and should be familiar to anyone with experience with the methods of native Python strings:

<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cat</code></td>
<td>Concatenate list of strings onto items</td>
</tr>
<tr>
<td><code>center</code></td>
<td>Centers strings to width</td>
</tr>
<tr>
<td><code>contains</code></td>
<td>Boolean for whether pattern matches</td>
</tr>
<tr>
<td><code>count</code></td>
<td>Count pattern occurs in string</td>
</tr>
<tr>
<td><code>decode</code></td>
<td>Decode a codec encoding</td>
</tr>
<tr>
<td><code>encode</code></td>
<td>Encode a codec encoding</td>
</tr>
<tr>
<td><code>endswith</code></td>
<td>Boolean if strings end with item</td>
</tr>
<tr>
<td><code>findall</code></td>
<td>Find pattern in string</td>
</tr>
<tr>
<td><code>get</code></td>
<td>Attribute access on items</td>
</tr>
<tr>
<td><code>join</code></td>
<td>Join items with separator</td>
</tr>
<tr>
<td><code>len</code></td>
<td>Return length of items</td>
</tr>
<tr>
<td><code>lower</code></td>
<td>Lowercase the items</td>
</tr>
<tr>
<td><code>lstrip</code></td>
<td>Remove whitespace on left of items</td>
</tr>
<tr>
<td><code>match</code></td>
<td>Find groups in items from the pattern</td>
</tr>
<tr>
<td><code>pad</code></td>
<td>Pad the items</td>
</tr>
<tr>
<td><code>repeat</code></td>
<td>Repeat the string a certain number of times</td>
</tr>
<tr>
<td><code>replace</code></td>
<td>Replace a pattern with a new value</td>
</tr>
<tr>
<td><code>rstrip</code></td>
<td>Remove whitespace on the right of items</td>
</tr>
<tr>
<td><code>slice</code></td>
<td>Pull out slices from strings</td>
</tr>
</tbody>
</table>
split    Split items by pattern
startswith Boolean if strings starts with item
strip    Remove whitespace from the items
title    Titlecase the items
upper    Uppercase the items

**Summary**

This has been a long chapter. That is because there are a lot of methods on the Series object. We have looked at looping over the values, overloaded operations, accessing values, changing the index, basics stats, coercion, dealing with missing values and more. You should have a good understanding of the power of the Series. In the next chapter, we will look at how to plot with a Series.
Series Plotting

The Series object has a lot of built-in functionality. In addition to the rich functionality previously mentioned, they also have the ability to create plots using integration with matplotlib.

For this section, we will use the following values for songs_69:

```python
>>> songs_69.name = 'Counts 69'
>>> songs_69
John 18
Paul 22
George 7
Ringo 5
Name: Counts 69, dtype: int64
```

And these values for songs_66:

```python
>>> songs_66.name = 'Counts 66'
>>> songs_66['Eric'] = float('nan')
>>> songs_66
Ringo 5.0
George 7.0
John 18.0
Paul 22.0
Eric NaN
Name: Counts 66, dtype: float64
```

Note that the index values have some overlap and that there is a NaN value as well.

The .plot method plots the index against value. If you are running from IPython or an interpreter, a matplotlib plot will appear when calling that method. In this case of the examples in the book, we are saving the plot as a png file which requires a bit more boilerplate. (The matplotlib.pyplot library needs to be loaded and a Figure object needs to be created (plt.figure()) so we can call the .savefig method on it.)

Below is the code that shows default plots for both of the series. The call to plt.legend() will insert a legend in the plot. The code also saves
Plotting two series that have string indexes. The default plot type is a line plot.

By default, `.plot` creates line charts, but it can also create bar charts by changing the `kind` parameter. The bar chart is not stacked by default, so the bars will occlude one another. We address this in the example below by setting `color` for `scores2` to black (`'k'`) and lowering the transparency by setting the `alpha` parameter:

```python
>>> fig = plt.figure()
>>> songs_69.plot(kind='bar')
>>> songs_66.plot(kind='bar', color='k', alpha=.5)
>>> plt.legend()
>>> fig.savefig('/tmp/ex2.png')
```
Plotting two series that have string indexes as bar plots.

We can also create histograms in pandas. First, we will create a series with a little more data in it, to make the histogram slightly more interesting:

```python
>>> data = pd.Series(np.random.randn(500),
... name='500 random')
```

Creating the histogram is easy, we simply invoke the `.hist` method of the series:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> data.hist()
>>> fig.savefig('/tmp/ex3.png')
```
A pandas histogram.

This looks very similar to a matplotlib histogram:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.hist(data)
>>> fig.savefig('/tmp/ex3-1.png')
```
A histogram created by calling the matplotlib function directly.

If we have installed scipy.stats, we can plot a kernel density estimation (KDE) plot. This plot is very similar to a histogram, but rather than using bins to represent areas where numbers fall, it plots a curved line:

```python
>>> fig = plt.figure()
>>> data.plot(kind='kde') # requires scipy.stats
>>> fig.savefig('/tmp/ex4.png')
```
pandas can generate nice KDE charts if scipy.stats is installed

Because pandas plotting is built on top of the matplotlib library, we can use the underlying functionality to tweak out plots. Deep diving into matplotlib is beyond the scope of this book, but below you can see that we add 2 plots to the figure. On the first we plot a histogram and kernel density estimation. On the second, we plot a cumulative density plot:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(211)

>>> data.plot(kind='kde', color='b', alpha=.6, ax=ax) # requires scipy.stats
normed=True is passed through to matplotlib
>>> data.hist(color='g', alpha=.6, ax=ax, normed=True)
>>> ax.set_title("KDE, Histogram & CDF")

>>> ax = fig.add_subplot(212)

>>> data.hist(ax=ax, normed=True, cumulative=True)
>>> fig.savefig('/tmp/ex5.png')
```
An illustration of using the matplotlib to create subplots

Other plot types

In addition, the series provides a few more options of out the box. The following table summarizes the different plots types. Not that these can be specified as kind parameters, or as attributes of the .plot attribute.

<table>
<thead>
<tr>
<th>PLOT METHODS</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot.area</td>
<td>Creates an area plot for numeric columns</td>
</tr>
<tr>
<td>plot.bar</td>
<td>Creates a bar plot for numeric columns</td>
</tr>
<tr>
<td>plot.barh</td>
<td>Creates a horizontal bar plot for numeric columns</td>
</tr>
<tr>
<td>plot.box</td>
<td>Creates a box plot for numeric columns</td>
</tr>
<tr>
<td>plot.density</td>
<td>Creates a kernel density estimation plot for numeric columns (also plot.kde)</td>
</tr>
<tr>
<td>plot.hist</td>
<td>Creates a histogram for numeric columns</td>
</tr>
<tr>
<td>plot.line</td>
<td>Create a line plot. Plots index on x column, and numeric column values for y</td>
</tr>
<tr>
<td>plot.pie</td>
<td>Create a pie plot.</td>
</tr>
</tbody>
</table>
Another popular plotting option is to use the Seaborn library. This library bills itself as a "Statistical data visualization" layer on top of matplotlib. It supports pandas natively, and has more plot types such as violin plots and swarm plots. It also offers the ability to facet charts (create subgrids based on features of the data). Given that both matplotlib and Seaborn offer a gallery on their website, feel free to browse the examples for inspiration.

**Summary**

In this chapter we examined plotting a Series. The pandas library provides some hooks to the matplotlib library. These can be really convenient. When you need more power, you can drop into raw matplotlib commands. In the next chapter, we will wrap up our coverage of the Series, by looking at simple analysis.

9 - matplotlib ([http://matplotlib.org/](http://matplotlib.org/)) also refers to itself in lowercase.

Another Series Example

I recently built an ergonomic keyboard. To take full advantage of it, one might consider creating a custom keyboard layout by analyzing letter frequency. Since I tend to spend a lot of time programming, instead of just considering alphanumeric symbols, I should probably take into account programming symbols as well. Then I can be super efficient on my keyboard, eliminate RSI, and as an extra bonus, prevent others from using my computer! To work up to this, we will first consider an analysis of letter frequency.
Both halves of my Ergodox keyboard in action.

Wikipedia has an entry on Letter Frequency, which contains a table and plot for relative frequencies of letters. Below is an attempt to recreate that table using pandas and the /usr/share/dict/american-english file found on many Linux distributions (or /usr/share/dict/words-english...
on Mac). This example will walk through getting the data into a Series object, tweaking it, and plotting the results.

**Standard Python**

To contrast between Python and pandas, we will process this data using both vanilla Python and then pandas. This should help you get a feel for the differences. We will start with the vanilla Python version.

Using Python's built-in string manipulation tools it is easy to count letter frequency. The dictionary file we will be analyzing contains data stored in plain text, one word per line:

```
$ head /usr/share/dict/american-english
A
A's
AA's
AB's
ABM's
AC's
ACTH's
AI's
AIDS's
AM's

$ tail /usr/share/dict/american-english
élan's
émigré
émigré's
émigrés
épée
épée's
épées
étude
étude's
```

First, we will load the data and store it in a variable. Note, that we are using Python 3 here, in Python 2 we would have to call `decode('utf=8')` because the contains UTF-8 encoded accented characters:

```python
>>> filename = '/usr/share/dict/american-english'
>>> data = open(filename).read()

>>> data = ''.join(data.split())
```

Now, the newlines are removed and the results are flattened into a single string:

```python
>>> data = ''.join(data.split())
```
With a big string containing the letters of all the words, the built-in class `collections.Counter` class makes easy work of counting letter frequency:

```python
>>> from collections import Counter
>>> counts = Counter(data)
>>> counts
```

This is quick and dirty, though it has a few issues. Certainly the built-in Python tools could handle dealing with this data. But this book is discussing pandas, so let's look at the pandas version.

**Enter pandas**

First, we will load the words into a `Series` object. Because the shape of the data in the file is essentially a single column CSV file, the `.from_csv` method should handle it:

```python
>>> words = pd.Series.from_csv(filename)
Traceback (most recent call last):
 ...
IndexError: single positional indexer is out-of-bounds
```

Whoops! The parsing logic is complaining because there is no index column. Let's try reading it again with `index_col=None`. This isn't well documented, but `index_col=None` tells pandas to create an index for us (it will just make an index of integers). We will also specify an encoding:

```python
>>> words = pd.Series.from_csv(filename, index_col=None, encoding='utf-8')
```

This should give us a series with a value for every word:

```python
>>> words
```
At this point, it makes sense to think about what we want in the end. If we are sticking to the `Series` datatype, then a series that maps letters (as index values) to counts will probably allow basic analysis similar to Wikipedia. The question is how to get there?

One way is to create a new series, `counts`. This series will have letters in the index, and counts of those letters as the values. We can create it by iterating over the words using `apply` to add the count of every letter to `counts`. We will also lowercase the letters to normalize them:

```python
>>> counts = pd.Series([], index=[]) # Create an empty Series with letters as indices
>>> def update_counts(val):
... global counts
... for let in val:
... let = let.lower() # Lowercase the letters
... count = counts.get(let, 0) + val.count(let) # Add the count of each letter
... counts = counts.set_value(let, count) # Update the counts
...
>>> _ = words.apply(update_counts) # Apply the update_counts function to each word in the words list
```

Sort the counts based on the values:
This will give us preliminary results:

```python
>>> counts.head()
s 150525
e 148096
i 102818
a 91167
n 80992
dtype: int64
```

**Tweaking data**

The most common letter of the English language is normally “e” (which Wikipedia corroborates). How did “s” get up there? Looking at the original file shows that it has plural entries. Let’s remove those and recount. One way to do that is to create a mask for all the words containing ‘’ in them.

We will use the negation of that map to find the words without quotes:

```python
>>> mask = ~(words.str.contains(''))
>>> words = words[mask]
>>> counts = pd.Series([], index=[])
>>> _ = words.apply(update_counts)
>>> counts = counts.sort_values(ascending=False)
>>> counts.head()
e 113431
s 80170
i 78173
a 65492
n 60443
dtype: int64
```

That looks better. Let’s plot it:

```python
>>> fig = plt.figure()
>>> counts.plot(title="Letter Counts")
>>> fig.savefig('/tmp/letters1.png')
```
**Figure showing the default plot of letter counts. Note that the default plot is a line plot.**

The default plot is a line plot. It is probably not the best visualization, and the ticks on the x axis are not very useful. Let’s try a bar plot:

```python
>>> fig = plt.figure()
>>> counts.plot(kind='bar', title="Letter Counts")
>>> fig.savefig('/tmp/letters2.png')
```
Figure showing a bar plot of letter counts.

That looks better. Wikipedia uses frequency rather than count. We can easily calculate frequency by applying the divide operation to the series with the sum as the denominator. Let's sort the index, so it is ordered alphabetically, and then plot it:

```python
>>> fig = plt.figure()
>>> freq = counts/counts.sum()
>>> freq.sort_index().plot(kind='bar', title="Letter Frequency")
>>> fig.savefig('/tmp/letters3.png')
```
Custom symbol frequency

Here is perhaps an easier way to get character counts in a series. To determine frequency of symbols in a given file, we will treat the whole file as a list of characters (utf-8 encoded) including newlines. This turns out to be easier than loading the dictionary file.

First we will try out a `get_freq` function on a string buffer with dummy data to validate the functionality:

```python
>>> def get_freq(fin):
... ser = pd.Series(list(fin.read()))
... ser = ser.value_counts()
... return (ser * 100.) / ser.sum()

>>> fin = StringIO('abcabczzzzz

')
>>> ser = get_freq(fin)
>>> ser
z 38.461538
\n 15.384615
b 15.384615
c 15.384615
a 15.384615
dtype: float64
```
I'll load it on the source of this book (which contains both the code and the text) and see what happens:

```python
>>> ser = get_freq(open('template/pandas.rst'))
>>> ser
23.553399
e 6.331422
t 4.672842
a 4.396412
s 3.753370
. 3.683772
i 3.521051
\n 3.472038
o 3.380875
n 3.206391
r 3.025045
l 2.351615
d 2.277116
= 1.938931
> 1.640935...
ç 0.00196
Á 0.00196
e 0.00196
á 0.00196
? 0.00196
é 0.00196
â 0.00196
ó 0.00196
^ 0.00196
â 0.00196
á 0.00196
ô 0.00196
ö 0.00196
ü 0.00098
Length: 114, dtype: float64
```

A brief look at this indicates that the text of this book is abnormal relative to normal English. Also, were I to customize my keyboard based on this text, the non-alphabetic characters that I hit the most—space, period, return, equals, and greater than—should be pretty close to the home row. It seems that I need a larger corpus to sample from, and that my current keyboard layout is not optimal as the most popular characters do not have keys on the home row.

Again, we can visualize this quickly using the .plot method:

```python
>>> fig = plt.figure()
>>> ser.plot(kind='bar', title="Custom Letter Frequency")
>>> fig.savefig('/tmp/letters4.png')
```
Summary

This chapter concludes our Series coverage. We examined loading data into a Series, processing it, and plotting it. We also saw how we could do similar processing with only the Python Standard Library. While that code is straightforward, once we start tweaking the data and plotting it, the pandas version becomes more concise, and will be faster.

11 - http://www.ergodox.org/
13 - https://normanlayout.info/
The two-dimensional counterpart to the one-dimensional Series is the DataFrame. To better understand this data structure, it helps to understand how it is constructed.

If you think of a data frame as row-oriented, the interface will feel wrong. Many tabular data structures are row-oriented. Perhaps this is due to spreadsheets and CSV files that are dealt with on a row by row basis. Perhaps it is due to the many OLTP databases that are row oriented out of the box. A DataFrame, is often used for analytical purposes and is better understood when thought of as column oriented, where each column is a Series.

**Note**

In practice many highly optimized analytical databases (those used for OLAP cubes) are also column oriented. Laying out the data in a columnar manner can improve performance and require less resources. Columns of a single type can be compressed easily. Performing analysis on a column requires loading only that columns whereas a row oriented database would require loading the complete database to access an entire column.

Below is a simple attempt to create a tabular Python data structure that is column oriented. It has an 0-based integer index, but that is not required, the index could be string based. Each column is similar to the Series-like structure developed previously:

```python
>>> df = {
```
Rows are accessed via the index, and columns are accessible from the column name. Below are simple functions for accessing rows and columns:

```python
>>> def get_row(df, idx):
... results = []
... value_idx = df['index'].index(idx)
... for col in df['cols']:
... results.append(col['data'][value_idx])
... return results

>>> get_row(df, 1)
[0.7, 'George']

>>> def get_col(df, name):
... for col in df['cols']:
... if col['name'] == name:
... return col['data']

>>> get_col(df, 'Name')
['Paul', 'George', 'Ringo']
```

**DataFrames**

Using the pandas DataFrame object, the previous data structure could be created like this:

```python
>>> import pandas as pd
>>> df = pd.DataFrame({
... 'growth':[.5, .7, 1.2],
... 'Name':['Paul', 'George', 'Ringo']})

>>> df
 Name growth
0 Paul 0.5
1 George 0.7
2 Ringo 1.2
```
Figure showing column oriented nature of Data Frame. (Note that a column can be pulled off as a Series)

To access a row by location, index off of the .iloc attribute:

```python
gdf.iloc[2]
Name Ringo
growth 1.2
Name: 2, dtype: object
```

Columns are accessible via indexing the column name off of the object:

```python
df['Name']
0 Paul
1 George
2 Ringo
Name: Name, dtype: object
```

Note the type of column is a pandas Series instance. Any operation that can be done to a series can be applied to a column:

```python
type(df['Name'])
<class 'pandas.core.series.Series'>
```

```python
df['Name'].str.lower()
0 paul
1 george
2 ringo
Name: Name, dtype: object
```

**Note**

The DataFrame overrides __getattr__ to allow access to columns as attributes. This tends to work ok, but will fail if the column name
conflicts with an existing method or attribute, or has an unexpected character such as a space:

```python
>>> df.Name
0 Paul
1 George
2 Ringo
Name: Name, dtype: object
```

The above should provide hints as to why the `Series` was covered in such detail. When column operations are involved, a series method is often involved. In addition, the index behavior across both data structures is the same.

**Construction**

Data frames can be created from many types of input:

- columns (dicts of lists)
- rows (list of dicts)
- CSV file (`pd.read_csv`)
- from NumPy ndarray
- And more, SQL, HDF5, etc

The previous creation of `df` illustrated making a data frame from columns. Below is an example of creating a data frame from rows:

```python
>>> pd.DataFrame([
... {'growth':.5, 'Name':'Paul'},
... {'growth':.7, 'Name':'George'},
... {'growth':1.2, 'Name':'Ringo'}])
```

```
Name growth
0 Paul 0.5
1 George 0.7
2 Ringo 1.2
```

Similarly, here is an example of loading this data from a CSV file:

```python
>>> csv_file = StringIO("""growth,Name
... .5,Paul
... .7,George
... 1.2,Ringo"")
```

```python
>> pd.read_csv(csv_file)
```

```
growth Name
94```

A data frame can be instantiated from a NumPy array as well. The column names will need to be specified:

```python
>>> pd.DataFrame(np.random.randn(10,3), columns=['a', 'b', 'c'])
a    b        c
0  0.926178  1.909417 -1.398568
1  0.562969 -0.650643 -0.487125
2 -0.592394 -0.863991  0.048522
3 -0.830950  0.270457 -0.050238
4 -0.238948 -0.907564 -0.576771
5  0.755391  0.500917  0.977555
6  0.099332  0.751387 -1.669405
7 -0.543360 -0.662624  0.578599
8 -0.763259 -1.804882 -1.627542
9  0.048085  0.259723 -0.904317
```

Data Frame Axis

Unlike a series, which has one axis, there are two axes for a data frame. They are commonly referred to as axis 0 and 1, or the row/index axis and the columns axis respectively:

```python
>>> df.axes
[RangeIndex(start=0, stop=3, step=1),
 Index(['Name', 'growth'], dtype='object')]
```

As many operations take an axis parameter, it is important to remember that 0 is the index and 1 is the columns:

```python
>>> df.axes[0]
RangeIndex(start=0, stop=3, step=1)

>>> df.axes[1]
Index(['Name', 'growth'], dtype='object')
```

Tip

In order to remember which axis is 0 and which is 1 it can be handy to think back to a Series. It also has axis 0 along the index:

```python
>>> df = pd.DataFrame({'Score1': [None, None],
                      'Score2': [85, 90]})

>>> df
Score1  Score2
0 None    85
1 None    90
```
If we want to sum up each of the columns, we sum along the index axis (axis=0), or along the row axis:

```python
>>> df.apply(np.sum, axis=0)
Score1  NaN
Score2  175.0
dtype: float64
```

To sum along every row, we sum down the columns axis (axis=1):

```python
>>> df.apply(np.sum, axis=1)
0    85
1    90
dtype: int64
```

Summary

In this section we were introduced to a Python data structure that is similar to how a pandas data frame is implemented. It illustrated the index and the columnar nature of the data frame. Then we looked at the main components of the data frame, and how columns are really just series
objects. We saw various ways to construct data frames. Finally, we looked at the two axes of the data frame.

In future chapters we will dig in more and see the data frame in action.

14 - OLTP (On-line Transaction Processing) is a characterization of databases that are meant for transactional data. Bank accounts are an example where data integrity is imperative, yet multiple users might need concurrent access. In contrast with OLAP (On-line Analytical Processing), which is optimized for complex querying and aggregation. Typically, reporting systems use these types of databases, which might store data in denormalized form in order to speed up access.
Before discussing data frames in detail, let’s cover working with a small data set. Below is some data from a portion of trail data of the Wasatch 100 trail race:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MILES</th>
<th>ELEVATION</th>
<th>CUMUL</th>
<th>% CUMUL GAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Mountain Pass Aid Station</td>
<td>39.07</td>
<td>7432</td>
<td>11579</td>
<td>43.8%</td>
</tr>
<tr>
<td>Mules Ear Meadow</td>
<td>40.75</td>
<td>7478</td>
<td>12008</td>
<td>45.4%</td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>42.46</td>
<td>7869</td>
<td>12593</td>
<td>47.6%</td>
</tr>
<tr>
<td>Pence Point</td>
<td>43.99</td>
<td>7521</td>
<td>12813</td>
<td>48.4%</td>
</tr>
<tr>
<td>Alexander Ridge Aid Station</td>
<td>46.9</td>
<td>6160</td>
<td>13169</td>
<td>49.8%</td>
</tr>
<tr>
<td>Alexander Springs</td>
<td>47.97</td>
<td>5956</td>
<td>13319</td>
<td>50.3%</td>
</tr>
<tr>
<td>Rogers Trail junction</td>
<td>49.52</td>
<td>6698</td>
<td>13967</td>
<td>52.8%</td>
</tr>
<tr>
<td>Rogers Saddle</td>
<td>49.77</td>
<td>6790</td>
<td>14073</td>
<td>53.2%</td>
</tr>
<tr>
<td>Railroad Bed</td>
<td>50.15</td>
<td>6520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambs Canyon Underpass Aid Station</td>
<td>52.48</td>
<td>6111</td>
<td>14329</td>
<td>54.2%</td>
</tr>
<tr>
<td>Lambs Trail</td>
<td>54.14</td>
<td>6628</td>
<td>14805</td>
<td>56.0%</td>
</tr>
</tbody>
</table>

We’ll load this data into a data frame and use it data to show basic CRUD operations and plotting.

Reading in CSV files is straightforward in pandas. Here we paste the contents into a `StringIO` buffer to emulate a CSV file:

```python
>>> data = StringIO('''LOCATION,MILES,ELEVATION,CUMUL,% CUMUL GAIN
... Big Mountain Pass Aid Station,39.07,7432,11579,43.8%
... Mules Ear Meadow,40.75,7478,12008,45.4%
... Bald Mountain,42.46,7869,12593,47.6%
... Pence Point,43.99,7521,12813,48.4%
... Alexander Ridge Aid Station,46.9,6160,13169,49.8%
... Alexander Springs,47.97,5956,13319,50.3%
... Rogers Trail junction,49.52,6698,13967,52.8%
... Rogers Saddle,49.77,6790,14073,53.2%
... Railroad Bed,50.15,6520,      ,%
... Lambs Canyon Underpass Aid Station,52.48,6111,14329,54.2%
... Lambs Trail,54.14,6628,14805,56.0%''')
```
... Pence Point, 43.99, 7521, 12813, 48.4%
... Alexander Ridge Aid Station, 46.9, 6160, 13169, 49.8%
... Alexander Springs, 47.97, 5956, 13319, 50.3%
... Rogers Trail junction, 49.52, 6698, 13967, 52.8%
... Rogers Saddle, 49.77, 6790, 14073, 53.2%
... Railroad Bed, 50.15, 6520,
... Lambs Canyon Underpass Aid Station, 52.48, 6111, 14329, 54.2%'')

>>> df = pd.read_csv(data)

Now that the data is loaded, it can easily be examined:

>>> df

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MILES</th>
<th>ELEVATION</th>
<th>CUMUL %</th>
<th>CUMUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Mountain Pass Aid Station</td>
<td>39.07</td>
<td>7432</td>
<td>11579.0</td>
<td></td>
</tr>
<tr>
<td>Mules Ear Meadow</td>
<td>40.75</td>
<td>7478</td>
<td>12008.0</td>
<td></td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>42.46</td>
<td>7869</td>
<td>12593.0</td>
<td></td>
</tr>
<tr>
<td>Pence Point</td>
<td>43.99</td>
<td>7521</td>
<td>12813.0</td>
<td></td>
</tr>
<tr>
<td>Alexander Ridge Aid Station</td>
<td>46.90</td>
<td>6160</td>
<td>13169.0</td>
<td></td>
</tr>
<tr>
<td>Alexander Springs</td>
<td>47.97</td>
<td>5956</td>
<td>13319.0</td>
<td></td>
</tr>
<tr>
<td>Rogers Trail junction</td>
<td>49.52</td>
<td>6698</td>
<td>13967.0</td>
<td></td>
</tr>
<tr>
<td>Rogers Saddle</td>
<td>49.77</td>
<td>6790</td>
<td>14073.0</td>
<td></td>
</tr>
<tr>
<td>Railroad Bed</td>
<td>50.15</td>
<td>6520</td>
<td></td>
<td>NaN</td>
</tr>
<tr>
<td>Lambs Canyon Underpass Aid Station</td>
<td>52.48</td>
<td>6111</td>
<td>14329.0</td>
<td></td>
</tr>
</tbody>
</table>

This book highlights a problem that a user may run across on a terminal. The pandas library tries to be smart about how it shows data on a terminal. In general it does a good job. Line wrapping can be annoying though if your terminal is not wide enough. One option is to invoke the .to_string method. To limit the width to a specific number of columns, the .to_string method accepts a line_width parameter:

```python
>>> print(df.to_string(line_width=60))

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MILES</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Mountain Pass Aid Station</td>
<td>39.07</td>
<td>7432</td>
</tr>
<tr>
<td>Mules Ear Meadow</td>
<td>40.75</td>
<td>7478</td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>42.46</td>
<td>7869</td>
</tr>
<tr>
<td>Pence Point</td>
<td>43.99</td>
<td>7521</td>
</tr>
<tr>
<td>Alexander Ridge Aid Station</td>
<td>46.90</td>
<td>6160</td>
</tr>
<tr>
<td>Alexander Springs</td>
<td>47.97</td>
<td>5956</td>
</tr>
<tr>
<td>Rogers Trail junction</td>
<td>49.52</td>
<td>6698</td>
</tr>
<tr>
<td>Rogers Saddle</td>
<td>49.77</td>
<td>6790</td>
</tr>
<tr>
<td>Railroad Bed</td>
<td>50.15</td>
<td>6520</td>
</tr>
<tr>
<td>Lambs Canyon Underpass Aid Station</td>
<td>52.48</td>
<td>6111</td>
</tr>
</tbody>
</table>
Another option for viewing data is to transpose it. This takes the columns and places them down the left side. Each row of the original data is now a column. In book form, neither of these options is nice with larger tables. Using a tool like Jupyter will allow you to see an HTML representation of the data:

```python
>>> print(df.T.to_string(line_width=60))
0
LOCATION Big Mountain Pass Aid Station
MILES 39.07
ELEVATION 7432
CUMUL 11579
% CUMUL GAIN 43.8%

1 2
LOCATION Mules Ear Meadow Bald Mountain
MILES 40.75 42.46
ELEVATION 7478 7869
CUMUL 12008 12593
% CUMUL GAIN 45.4% 47.6%

3 4
LOCATION Pence Point Alexander Ridge Aid Station
MILES 43.99 46.9
ELEVATION 7521 6160
CUMUL 12813 13169
% CUMUL GAIN 48.4% 49.8%

5 6
LOCATION Alexander Springs Rogers Trail junction
MILES 47.97 49.52
ELEVATION 5956 6698
CUMUL 13319 13967
% CUMUL GAIN 50.3% 52.8%

7 8
LOCATION Rogers Saddle Railroad Bed
MILES 49.77 50.15
ELEVATION 6790 6520
CUMUL 14073 NaN
% CUMUL GAIN 53.2% NaN

LOCATION Lambs Canyon Underpass Aid Station
MILES 52.48
ELEVATION 6111
```
Looking at the data

In addition to just looking at the string representation of a data frame, the .describe method provides summary statistics of the numeric data. It returns the count of items, the average value, the standard deviation, and the range and quantile data for every column that is a float or an integer:

```python
>>> df.describe()

<table>
<thead>
<tr>
<th></th>
<th>MILES</th>
<th>ELEVATION</th>
<th>CUMUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>10.000000</td>
<td>10.000000</td>
<td>9.000000</td>
</tr>
<tr>
<td>mean</td>
<td>46.306000</td>
<td>6853.50000</td>
<td>13094.444444</td>
</tr>
<tr>
<td>std</td>
<td>4.493574</td>
<td>681.391428</td>
<td>942.511686</td>
</tr>
<tr>
<td>min</td>
<td>39.070000</td>
<td>5956.00000</td>
<td>11579.000000</td>
</tr>
<tr>
<td>25%</td>
<td>42.842500</td>
<td>6250.00000</td>
<td>12593.000000</td>
</tr>
<tr>
<td>50%</td>
<td>47.435000</td>
<td>6744.00000</td>
<td>13169.000000</td>
</tr>
<tr>
<td>75%</td>
<td>49.707500</td>
<td>7466.50000</td>
<td>13967.000000</td>
</tr>
<tr>
<td>max</td>
<td>52.480000</td>
<td>7869.00000</td>
<td>14329.000000</td>
</tr>
</tbody>
</table>
```

Because every column can be treated as a series, the methods for analyzing the series can be used on the columns. The LOCATION column is string based, so we will use the .value_counts method to examine if there are repeats:

```python
>>> df['LOCATION'].value_counts()

Railroad Bed 1
Rogers Saddle 1
Pence Point 1
Alexander Springs 1
Bald Mountain 1
Lambs Canyon Underpass Aid Station 1
Mules Ear Meadow 1
Big Mountain Pass Aid Station 1
Alexander Ridge Aid Station 1
Rogers Trail junction 1
Name: LOCATION, dtype: int64
```

In this case, because the location names are unique, the .value_counts method does not provide much new information.

Another option for looking at the data is the .corr method. This method provides the *Pearson Correlation Coefficient* statistic for all the numeric columns in a table. The result is a number (between -1 and 1) that describes the linear relationship between the variables:

```python
>>> df.corr()

<table>
<thead>
<tr>
<th></th>
<th>MILES</th>
<th>ELEVATION</th>
<th>CUMUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILES</td>
<td>1.000000</td>
<td>-0.783780</td>
<td>0.986613</td>
</tr>
</tbody>
</table>
```
This statistic shows that any column will have a perfect correlation (a value of 1) with itself, but also that cumulative elevation is pretty strongly correlated with distance (as both grow over the length of the course at a pretty constant rate, this makes intuitive sense). This is a section of the course where the starting point is at a higher elevation than the final elevation. As such, there is a negative correlation between the miles and elevation for this portion.

**Plotting With Data Frames**

Data frames also have built-in plotting ability. The default behavior is to use the index as the x values, and plot every numerical column (any string column is ignored):

```python
>>> fig = plt.figure()
>>> df.plot()
>>> fig.savefig('/tmp/df-ex1.png')
```

Default plot of a data frame containing both numerical and string data. Note that when we try to save this as a png file it is empty if we forget the call to add a matplotlib
axes to the figure (one way is to call `fig.add_subplot(111)`). Within Jupyter notebook, we will see a real plot, this is only an issue when using pandas to plot and then saving the plot.

The default saved plot is actually empty. (Note that if you are using Jupyter, this is not the case and a plot will appear if you used the `%matplotlib inline` directive). To save a plot of a data frame that has the image in it, the ax parameter needs to be passed a matplotlib Axis. Calling `fig.subplot(111)` will give us one:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> df.plot(ax=ax)
>>> fig.savefig('/tmp/df-ex2.png')
```

These plots are not perfect, yet they start to show the power that pandas provides for visualizing data quickly.

The pandas library has some built-in support for the matplotlib library. Though there are a few quirks, we can easily produce charts and visualizations.
This plot has the problem that the scale of the miles plot is blown out due to the elevation numbers. pandas allows labelling the other y-axis (the one on the right side), but to do so requires two calls to `.plot`. For the first `.plot` call, pull out only the elevation columns using an index operation with a list of (numerical) columns to pull out. The second call will be made against the series with the mileage data and a `secondary_y` parameter set to `True`. It also requires an explicit call to `plt.legend` to place a legend for the mileage:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> df[['CUMUL', 'ELEVATION']].plot(ax=ax)
>>> df['MILES'].plot(secondary_y=True)
>>> plt.legend(loc='best')
>>> ax.set_ylabel('Elevation (feet)')
>>> ax.right_ax.set_ylabel('Distance (miles)')
>>> fig.savefig('/tmp/df-ex3.png')
```

Plot using `secondary_y` parameter to use different scales on the left and right axis for elevation and distance.

Another way to convey information is to plot with labels along the x axis instead of using a numerical index (which does not mean much to
viewers of the graph). By default, pandas plots the index along the x axis. To graph against the name of the station, we need to pass in an explicit value for x, the ELEVATION column. The labels will need to tilted a bit so that they do not overlap. This rotation is done with `fig.autofmt_xdate()`. The bounding box also needs to be expanded a bit so the labels do not get clipped off at the edges. The `bbox_inches='tight'` parameter to `fig.savefig` will help with this:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> df.plot(x='LOCATION', y=['ELEVATION', 'CUMUL'], ax=ax)
>>> df.plot(x='LOCATION', y='MILES', secondary_y=True, ax=ax)
>>> ax.set_ylabel('Elevation (feet)')
>>> ax.right_ax.set_ylabel('Distance (miles)')
>>> fig.autofmt_xdate()
>>> fig.savefig('/tmp/df-ex4.png', bbox_inches='tight')
```

**Plot using LOCATION as the x axis rather than the default (the index values).**

Another option is to plot the elevation against the miles. pandas make it easy to experiment:

```python
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> df.plot(x='MILES', y=['ELEVATION', 'CUMUL'], ax=ax)
>>> plt.legend(loc='best')
>>> ax.set_ylabel('Elevation (feet)')
```
Plot using MILES as the x axis rather than the default (the index values).

Adding rows

The race data is a portion from the middle section of the race. If we wanted to combine the data with other portions of the trail, it requires using the \texttt{.concat} function or the \texttt{.append} method.

The \texttt{.concat} function combines two data frames. To add the next mile marker, we need to create a new data frame and use the function to join the two together:

```python
>>> df2 = pd.DataFrame([('Lambs Trail', 54.14, 6628, 14805, '56.0%')], columns=['LOCATION', 'MILES', 'ELEVATION', 'CUMUL', '% CUMUL GAIN'])
```

```bash
>>> print(pd.concat([df, df2]).to_string(line_width=60))
```

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MILES</th>
<th>ELEVATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Mountain Pass Aid Station</td>
<td>39.07</td>
<td>7432</td>
<td></td>
</tr>
<tr>
<td>Mules Ear Meadow</td>
<td>40.75</td>
<td>7478</td>
<td></td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>42.46</td>
<td>7869</td>
<td></td>
</tr>
<tr>
<td>Pence Point</td>
<td>43.99</td>
<td>7521</td>
<td></td>
</tr>
<tr>
<td>Alexander Ridge Aid Station</td>
<td>46.90</td>
<td>6160</td>
<td></td>
</tr>
<tr>
<td>Alexander Springs</td>
<td>47.97</td>
<td>5956</td>
<td></td>
</tr>
<tr>
<td>Rogers Trail junction</td>
<td>49.52</td>
<td>6698</td>
<td></td>
</tr>
<tr>
<td>Rogers Saddle</td>
<td>49.77</td>
<td>6790</td>
<td></td>
</tr>
<tr>
<td>Railroad Bed</td>
<td>50.15</td>
<td>6520</td>
<td></td>
</tr>
<tr>
<td>Lambs Canyon Underpass Aid Station</td>
<td>52.48</td>
<td>6111</td>
<td></td>
</tr>
</tbody>
</table>
```
There are a couple of things to note from the result of this operation:

- The original data frames were not modified. This is usually (but not always) the case with pandas data structures.
- The index of the last entry is 0. Ideally it would be 10.

To resolve the last issue, pass the `ignore_index=True` parameter to `concat`. To solve the first issue, simply overwrite `df` with the new data frame:

```python
>>> df = pd.concat([df, df2], ignore_index=True)
>>> df.index
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype='int64')
```

Adding columns

To add a column, simply assign a series to a new column name:

```python
>>> df['bogus'] = pd.Series(range(11))
```

Below, we add a column named `STATION`, based on whether the location has an aid station. It will compute the new boolean value for the column based on the occurrence of 'Station' in the `LOCATION` column:

```python
>>> def aid_station(val):
...     return 'Station' in val
```

```python
>>> df['STATION'] = df['LOCATION'].apply(aid_station)
>>> print(df.to_string(line_width=60))
LOCATION          MILES  ELEVATION       
0  Big Mountain Pass Aid Station  39.07  7432
1         Mules Ear Meadow  40.75  7478
2           Bald Mountain  42.46  7869
3            Pence Point  43.99  7521
4      Alexander Ridge Aid Station  46.90  6160
5     Alexander Springs  47.97  5956
```
Deleting Rows

The pandas data frame has a .drop method that takes a sequence of index values. It returns a new data frame without those index entries. To remove the items found in index 5 and 9 use the following:

```python
>>> df.drop([5, 9])
```

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>MILES</th>
<th>ELEVATION</th>
<th>CUMUL %</th>
<th>CUMUL GAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Mountain Pass Aid Station</td>
<td>39.07</td>
<td>7432</td>
<td>11579</td>
<td>43.8%</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mules Ear Meadow</td>
<td>40.75</td>
<td>7478</td>
<td>12008</td>
<td>45.4%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>42.46</td>
<td>7869</td>
<td>12593</td>
<td>47.6%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pence Point</td>
<td>43.99</td>
<td>7521</td>
<td>12813</td>
<td>48.4%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander Ridge Aid Station</td>
<td>46.90</td>
<td>6160</td>
<td>13169</td>
<td>49.8%</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogers Trail junction</td>
<td>49.52</td>
<td>6698</td>
<td>13967</td>
<td>52.8%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogers Saddle</td>
<td>49.77</td>
<td>6790</td>
<td>14073</td>
<td>53.2%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railroad Bed</td>
<td>50.15</td>
<td>6520</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambs Trail</td>
<td>54.14</td>
<td>6628</td>
<td>14805</td>
<td>56.0%</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

The .drop method does not work in place. It returns a new data frame.
This method accepts index labels, which can be pulled out by slicing the .index attribute as well. This is useful when using text indexes or to delete large slices of rows. The previous example can be written as:

```python
>>> df.drop(df.index[5:10:4])
STATION    LOCATION             MILES  ELEVATION  CUMUL %  CUMUL GAIN
0   Big Mountain Pass Aid Station  39.07       7432  11579        43.8%
True
1                Mules Ear Meadow  40.75       7478  12008        45.4%
False
2                   Bald Mountain  42.46       7869  12593        47.6%
False
3                     Pence Point  43.99       7521  12813        48.4%
False
4     Alexander Ridge Aid Station  46.90       6160  13169        49.8%
True
6           Rogers Trail junction  49.52       6698  13967        52.8%
False
7                   Rogers Saddle  49.77       6790  14073        53.2%
False
8                    Railroad Bed  50.15       6520    NaN          NaN
False
10                    Lambs Trail  54.14       6628  14805        56.0%
False
```

Deleting Columns

To delete columns, use the .pop method, the .drop method with axis=1, or the del statement. Since the bogus column provides no additional value over the index, we will drop it:

```python
>>> bogus = df.pop('bogus')
```

The bogus object is now a series holding the column removed from the data frame:

```python
>>> bogus
0     0
1     1
2     2
3     3
4     4
5     5
6     6
7     7
8     8
9     9
10    10
Name: bogus, dtype: int64
```

Examining the columns shows that bogus no longer exists:

```python
>>> df.columns
```

109
Because data frames emulate some of the dictionary interface, the `del` statement can also be used to remove columns. First, we will add the column back before deleting it again:

```python
>>> df['bogus'] = bogus
>>> del df['bogus']
>>> df.columns
Index(['LOCATION', 'MILES', 'ELEVATION', 'CUMUL', '% CUMUL GAIN', 'STATION'], dtype='object')
```

Note

These operations operate on the data frame *in place*.

The `.drop` method accepts an `axis` parameter and does not work in place—it returns a new data frame:

```python
>>> df.drop(['ELEVATION', 'CUMUL', '% CUMUL GAIN', 'STATION'], axis=1)
```

```py
LOCATION   MILES
0  Big Mountain Pass Aid Station  39.07
1      Mules Ear Meadow  40.75
2     Bald Mountain  42.46
3      Pence Point  43.99
4  Alexander Ridge Aid Station  46.90
5  Alexander Springs  47.97
6  Rogers Trail junction  49.52
7    Rogers Saddle  49.77
8      Railroad Bed  50.15
9 Lambs Canyon Underpass Aid Station  52.48
10    Lambs Trail  54.14
```

Note

It will be more consistent to use `.drop` with `axis=1` than `del` or `.pop`. You will have to get used to the meaning of `axis=1`, which you can interpret as “apply this to the columns”.

Working with this data should give you a feeling for the kinds of operations that are possible on `DataFrame` objects. This section has only
covered a small portion of them.

Summary

In this chapter, we saw a quick overview of the data frame. We saw how to load data from a CSV file. We also looked at CRUD operations and plotting data.

In the next chapter we will examine the various members of the **DataFrame** object.

Data Frame Methods

Part of the power of Pandas is due to the rich methods that are built-in to the Series and DataFrame objects. This chapter will look into many of the attributes of the DataFrame.

The data for this section is sample retail sales data:

```python
>>> data = StringIO('''UPC,Units,Sales,Date
... 1234,5,20.2,1-1-2014
... 1234,2,8.,1-2-2014
... 1234,3,13.,1-3-2014
... 789,1,2.,1-1-2014
... 789,2,3.8,1-2-2014
... 789,,1-3-2014
... 789,1.8,1-5-2014''')
>>> sales = pd.read_csv(data)
```

```
UPC  Units  Sales      Date
0  1234    5.0   20.2  1-1-2014
1  1234    2.0    8.0  1-2-2014
2  1234    3.0   13.0  1-3-2014
3   789    1.0    2.0  1-1-2014
4   789    2.0    3.8  1-2-2014
5   789    NaN   NaN  1-3-2014
6   789    1.0    1.8  1-5-2014
```

Data Frame Attributes

Let's dig in a little more. We can examine the axes of a data frame by looking at the `.axes` attribute:

```python
>>> sales.axes
[RangeIndex(start=0, stop=7, step=1),
 Index(['UPC', 'Units', 'Sales', 'Date'], dtype='object')]
```

The `.axes` is a list that contains the index and columns:

```python
>>> sales.index
RangeIndex(start=0, stop=7, step=1)
```

```python
>>> sales.columns
Index(['UPC', 'Units', 'Sales', 'Date'],
      dtype='object')
```
The number of row and columns is also available via the .shape attribute:

```python
>>> sales.shape
(7, 4)
```

For basic information about the object, use the .info method. Notice that the dtype for UPC is int64. Though UPC appears number-like here, it is possible to have dashes or other non-numeric values. It might be preferable to have it stored as a string. Also, the dtype for Date is object, it would be nice if it was a date instead. This may prove problematic when doing actual analysis. In later sections we will show how to change these types using the .astype method and the to_datetime function.

The .info method summarizes the types and columns of a data frame. It also provides insight into how much memory is being consumed. When you have larger data sets, this information is useful to see where memory is going. Converting string types to numeric or date types can go far to help lower the memory usage:

```python
>>> sales.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7 entries, 0 to 6
Data columns (total 4 columns):
UPC      7 non-null int64
Units    6 non-null float64
Sales    6 non-null float64
Date     7 non-null object
dtypes: float64(2), int64(1), object(1)
memory usage: 280.0+ bytes
```

Iteration

Data frames include a variety of methods to iterate over the values. By default, iteration occurs over the column names:

```python
>>> for column in sales:
...     print(column)
UPC
Units
Sales
Date
```

The .keys method is a more explicit synonym for the default iteration behavior:
>>> for column in sales.keys():
... print(column)
UPC
Units
Sales
Date

Note

Unlike the Series object which tests for membership against the index, the DataFrame tests for membership against the columns. The iteration behavior (**iter**) and membership behavior (**contains**) is the same for the DataFrame:

```python
>>> 'Units' in sales
True
>>> 0 in sales
False
```

The `.iteritems` method returns pairs of column names and the individual column (as a Series):

```python
>>> for col, ser in sales.iteritems():
...     print(col, ser)
UPC 0    1234
    2    1234
    3    789
    4    789
    5    789
    6    789
Name: UPC, dtype: int64
Units 0    5.0
    2    3.0
    3    1.0
    4    2.0
    5    NaN
    6    1.0
Name: Units, dtype: float64
Sales 0    20.2
    1    8.0
    2    13.0
    3    2.0
    4    3.8
    5    NaN
    6    1.8
Name: Sales, dtype: float64
Date 0    1-1-2014
    1    1-2-2014
    2    1-3-2014
```
The `.iterrows` method returns a tuple for every row. The tuple has two items. The first is the index value. The second is the row converted into a `Series` object. This might be a little tricky in practice because a row's values might not be homogenous, whereas that is usually the case in a column of data. Notice that the `dtype` for the row series is `object` because the row has strings and numeric values in it:

```python
>>> for row in sales.iterrows():
...     print(row)
...     break  # limit data
(0, UPC          1234
 Units           5
 Sales        20.2
 Date     1-1-2014
Name: 0, dtype: object)
```

The `.itertuples` method returns a namedtuple containing the index and row values:

```python
>>> for row in sales.itertuples():
...     print(row)
...     break  # limit data
Pandas(Index=0, UPC=1234, Units=5.0, Sales=20.199999999999999,
Date='1-1-2014')
```

NOTE

If you aren’t familiar with NamedTuples in Python, check them out from the `collections` module. They give you all the benefits of a tuple: immutable, low memory requirements, and index access. In addition, the namedtuple allows you to access values by attribute:

```python
>>> import collections
>>> Sales = collections.namedtuple('Sales',
...     'upc,units,sales')
>>> s = Sales(1234, 5., 20.2)
>>> s[0]   # index access
1234
>>> s.upc  # attribute access
1234
```
This helps make your code more readable, as 0 is a magic number in the above code. It is not clear to readers of the code what 0 is. But .upc is very explicit and makes for readable code.

We can ask a data frame how long it is with the len function. This is not the number of columns (even though iteration is over the columns), but the number of rows:

```python
>>> len(sales)  # len of rows/index
7
```

Note
Operations performed during iteration are not vectorized in pandas and have overhead. If you find yourself performing operations in an iteration loop, there might be a vectorized way to do the same thing.

For example, you would not want to iterate over the row data to sum the column values. The .sum method is optimized to perform this operation.

Arithmetic
Data frames support broadcasting of arithmetic operations. If we add a number to a data frame, it is possible to increment every cell by that amount. But there is a caveat, to increment every numeric value by ten, simply adding ten to the data frame will fail:

```python
>>> sales + 10
Traceback (most recent call last):
...
TypeError: Could not operate 10 with block values
Can't convert 'int' object to str implicitly
```

We need to only broadcast this operation to the numeric columns. Since the units and sales columns are both numeric, we can slice them out and broadcast on them:

```python
>>> sales[['Sales', 'Units']] + 10
```
<table>
<thead>
<tr>
<th>Sales</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.2</td>
</tr>
<tr>
<td>1</td>
<td>18.0</td>
</tr>
<tr>
<td>2</td>
<td>23.0</td>
</tr>
<tr>
<td>3</td>
<td>12.0</td>
</tr>
<tr>
<td>4</td>
<td>13.8</td>
</tr>
<tr>
<td>5</td>
<td>NaN</td>
</tr>
<tr>
<td>6</td>
<td>11.8</td>
</tr>
</tbody>
</table>

In practice, unless the data columns are homogenous, such operations will be performed on a subset of the columns. To adjust only the units column, simply broadcast to that column:

```python
>>> sales.Units + 2
0    7.0
1    4.0
2    5.0
3    3.0
4    4.0
5    NaN
6    3.0
Name: Units, dtype: float64
```

Matrix Operations

The data frame can be treated as a matrix. There is support for transposing a matrix:

```python
>>> sales.transpose()  # sales.T is a shortcut
```

<table>
<thead>
<tr>
<th>UPC</th>
<th>1234</th>
<th>1234</th>
<th>1234</th>
<th>789</th>
<th>789</th>
<th>789</th>
<th>789</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>NaN</td>
<td>1</td>
</tr>
<tr>
<td>Sales</td>
<td>20.2</td>
<td>8</td>
<td>13</td>
<td>2</td>
<td>3.8</td>
<td>NaN</td>
<td>1.8</td>
</tr>
<tr>
<td>Date</td>
<td>1-1-2014</td>
<td>1-2-2014</td>
<td>1-3-2014</td>
<td>1-1-2014</td>
<td>1-2-2014</td>
<td>1-3-2014</td>
<td>1-5-2014</td>
</tr>
</tbody>
</table>

Tip

The .T property of a data frame is a nice wrapper to the .transpose method. It comes in handy when examining a data frame in an iPython Notebook. It turns out that viewing the column headers along the left-hand side often makes the data more compact and easier to read.

The dot product can be called on a data frame if the contents are numeric:

```python
>>> sales.dot(sales.T)
Traceback (most recent call last):
```
Serialization

Data frames can serialize to many forms. The most important functionality is probably converting to and from a CSV file, as this format is the lingua franca of data. We already saw that the pd.read_csv function will create a DataFrame. Writing to CSV is easy, we simply use the .to_csv method:

```python
>>> fout = StringIO()
>>> sales.to_csv(fout, index_label='index')

>>> print(fout.getvalue())
index,UPC,Units,Sales,Date
0,1234,5.0,20.2,1-1-2014
1,1234,2.0,8.0,1-2-2014
2,1234,3.0,13.0,1-3-2014
3,789,1.0,2.0,1-1-2014
4,789,2.0,3.8,1-2-2014
5,789,,1.0,1.8,1-5-2014
6,789,1.0,1.8,1-5-2014
```

The .to_dict method gives a mapping of column name to a mapping of index to value. If you needed to store the data in a JSON compliant format, this is one possibility:

```python
>>> sales.to_dict()
{'Units': {0: 5.0, 1: 2.0, 2: 3.0, 3: 1.0, 4: 2.0, 5: nan, 6: 1.0},
 'UPC': {0: 1234, 1: 1234, 2: 1234, 3: 789, 4: 789, 5: 789, 6: 789},
 'Sales': {0: 20.2, 1: 8.0, 2: 13.0, 3: 2.0, 4: 3.8, 5: nan, 6: 1.8}}
```

An optional parameter orient can create a mapping of column name to a list of values:

```python
>>> sales.to_dict(orient='list')
{'Units': [5.0, 2.0, 3.0, 1.0, 2.0, nan, 1.0],
 'Date': ['1-1-2014', '1-2-2014', '1-3-2014', '1-1-2014', '1-2-2014', '1-3-2014', '1-5-2014'],
 'UPC': [1234, 1234, 1234, 789, 789, 789, 789],
 'Sales': [20.2, 8.0, 13.0, 2.0, 3.8, nan, 1.8]}
```

Data frames can also be created from the serialized dict if needed:

```python
>>> pd.DataFrame.from_dict(sales.to_dict())
Date  Sales   UPC  Units
0  1-1-2014   20.2  1234    5.0
```
In addition, data frames can read and write Excel files. Use the `.to_excel` method to dump the data out:

```python
>>> writer = pd.ExcelWriter('/tmp/output.xlsx')
>>> sales.to_excel(writer, 'sheet1')
>>> writer.save()
```

We can also read Excel data:

```python
>>> pd.read_excel('/tmp/output.xlsx')
UPC  Units  Sales      Date
0  1234    5.0   20.2  1-1-2014
1  1234    2.0    8.0  1-2-2014
2  1234    3.0   13.0  1-3-2014
3   789    1.0    2.0  1-1-2014
4   789    2.0    3.8  1-2-2014
5   789    NaN    NaN  1-3-2014
6   789    1.0    1.8  1-5-2014
```

Note

You might need to install the `openpyxl` module to support reading and writing `xlsx` to Excel. This is easy with `pip`:

```bash
$ pip install openpyxl
```

If you are dealing with `xls` files, you will need `xlrd` and `xlwt`. Again, `pip` makes this easy:

```bash
$ pip install xlrd xlwt
```

Note

The `read_excel` function has many options to help it divine how to parse spreadsheets that aren't simply CSV files that are loaded into Excel. You might need to play around with them. Often, it is easier (but perhaps not quite as satisfying) to open a spreadsheet and simply export a new sheet with only the data you need.
Data frames can also be converted to NumPy matrices for use in applications that support them:

```python
>>> sales.as_matrix()  # NumPy representation
array([[1234,  5.0, 20.2, '1-1-2014'],
       [1234,  2.0,  8.0, '1-2-2014'],
       [1234,  3.0, 13.0, '1-3-2014'],
       [789,  1.0,  2.0, '1-1-2014'],
       [789,  2.0,  3.8, '1-2-2014'],
       [789,  nan,  nan, '1-3-2014'],
       [789,  1.0,  1.8, '1-5-2014']], dtype=object)
```

Index Operations

A data frame has various index operations. The first that we will explore — `.reindex`—conforms the data to a new index and/or columns. To pull out just the items at index 0 and 4, do the following:

```python
>>> sales.reindex([0, 4])
UPC  Units  Sales      Date
0  1234    5.0   20.2  1-1-2014
4   789    2.0    3.8  1-2-2014
```

This method also supports column selection:

```python
>>> sales.reindex(columns=['Date', 'Sales'])
Date  Sales
0  1-1-2014   20.2
1  1-2-2014    8.0
2  1-3-2014   13.0
3  1-1-2014    2.0
4  1-2-2014    3.8
5  1-3-2014   NaN
6  1-5-2014    1.8
```

Column and index selection may be combined to further refine selection. In addition, new entries for both index values and column names can be included. They will default to the `fill_value` optional parameter (which is `NaN` unless specified):

```python
>>> sales.reindex(index=[2, 6, 8],
...     columns=['Sales', 'UPC', 'missing'])
   Sales  UPC  missing
2   13.0  1234.0   NaN
6    1.8   789.0   NaN
8   NaN    NaN    NaN
```

One common operation is to use another column as the index. The `.set_index` method does this for us:
```python
>>> by_date = sales.set_index('Date')
>>> by_date

<table>
<thead>
<tr>
<th>Date</th>
<th>UPC</th>
<th>Units</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1-2014</td>
<td>1234</td>
<td>5.0</td>
<td>20.2</td>
</tr>
<tr>
<td>1-2-2014</td>
<td>1234</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>1-3-2014</td>
<td>1234</td>
<td>3.0</td>
<td>13.0</td>
</tr>
<tr>
<td>1-1-2014</td>
<td>789</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1-2-2014</td>
<td>789</td>
<td>2.0</td>
<td>3.8</td>
</tr>
<tr>
<td>1-3-2014</td>
<td>789</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1-5-2014</td>
<td>789</td>
<td>1.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

**Note**

Be careful, if you think of the index as analogous to a primary key in database parlance. Because the index can contain duplicate entries, this description is not quite accurate. Use the `verify_integrity` parameter to ensure uniqueness:

```python
>>> sales.set_index('Date', verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Index has duplicate keys: ['1-1-2014', '1-2-2014', '1-3-2014']
```

To add an incrementing integer index to a data frame, use `.reset_index`:

```python
>>> by_date.reset_index()

<table>
<thead>
<tr>
<th>Date</th>
<th>UPC</th>
<th>Units</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1-1-2014</td>
<td>1234</td>
<td>5.0</td>
<td>20.2</td>
</tr>
<tr>
<td>1 1-2-2014</td>
<td>1234</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>2 1-3-2014</td>
<td>1234</td>
<td>3.0</td>
<td>13.0</td>
</tr>
<tr>
<td>3 1-1-2014</td>
<td>789</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4 1-2-2014</td>
<td>789</td>
<td>2.0</td>
<td>3.8</td>
</tr>
<tr>
<td>5 1-3-2014</td>
<td>789</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>6 1-5-2014</td>
<td>789</td>
<td>1.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>
```

**Getting and Setting Values**

There are two methods to pull out a single "cell" in the data frame. One — `.iat`—uses the position of the index and column (0-based):

```python
>>> sales.iat[4, 2]
3.7999999999999998
```

The other option—`.get_value`—uses an index name and a column name:
Again, if a duplicate valued index is selected, the result will not be a scalar, but will be an array (or possibly a data frame):

>>> by_date.get_value('1-2-2014', 'UPC')
array([1234, 789])

The .get_value method has a analog—.set_value—to assign a scalar to an index and column value. To assign sales of 789 to index 6 (yes that happens to also be a UPC value), do the following:

>>> sales.set_value(6, 'Sales', 789)

UPC  Category  Units  Sales      Date
0  1234     Food    5.0   20.2  1-1-2014
1  1234     Food    2.0    8.0  1-2-2014
2  1234     Food    3.0   13.0  1-3-2014
3   789     Food    1.0    2.0  1-1-2014
4   789     Food    2.0    3.8  1-2-2014
5   789     Food    NaN    NaN  1-3-2014
6   789     Food    1.0  789.0  1-5-2014

There is no .iset_value method.

To insert a column at a specified location use the .insert method. Note that this method operates in-place and does not have a return value. The first parameter for the method is the zero-based location of the new column. The next parameter is the new column name and the third parameter is the new value. Below we insert a category column after UPC (at position 1):

>>> sales.insert(1, 'Category', 'Food')
# no return value!

The value does not have to be a scalar, it could be a sequence or a Series object, in which case it should have the same length as the data frame.
Column insertion is also available through index assignment on the data frame. When new columns are added this way, they are always appended to the end (the right-most column). To change the order of the columns calling .reindex or indexing with the list of desired columns would be necessary.

The .replace method is a powerful way to update many values of a data frame across columns. To replace all 789's with 790 do the following:

```python
>>> sales.replace(789, 790)
```

```
UPC Category Units Sales Date
0 1234 Food 5.0 20.2 1-1-2014
1 1234 Food 2.0 8.0 1-2-2014
2 1234 Food 3.0 13.0 1-3-2014
3 790 Food 1.0 2.0 1-1-2014
4 790 Food 2.0 3.8 1-2-2014
5 790 Food NaN NaN 1-3-2014
6 790 Food 1.0 790.0 1-5-2014
```

Because the sales column for index 6 also has a value of 789, this will be replaced as well. To fix this, instead of passing in a scalar for the to_replace parameter, use a dictionary mapping column name to a dictionary of value to new value. If the new sales value of 789.0 was also erroneous, it could be updated in the same call:

```python
>>> sales.replace({'UPC': {789: 790},
 'Sales': {789: 1.4}})
```

```
UPC Category Units Sales Date
0 1234 Food_stuff 5.0 20.2 1-1-2014
123
```

The .replace method will also accept regular expressions (they can also be included in nested dictionaries) if the regex parameter is set to True:

```python
>>> sales.replace('(F.*d)', r'\1_stuff', regex=True)
```

```
UPC Category Units Sales Date
0 1234 Food_stuff 5.0 20.2 1-1-2014
```
Deleting Columns

There are at least four ways to remove a column:

- The `.pop` method
- The `.drop` method with axis=1
- The `.reindex` method
- Indexing with a list of new columns

The `.pop` method takes the name of a column and removes it from the data frame. It operates in-place. Rather than returning a data frame, it returns the removed column. Below, the column `subcat` will be added and then subsequently removed:

```python
>>> sales['subcat'] = 'Dairy'
>>> sales
 UPC Category Units Sales Date subcat
0 1234 Food 1234 5.0 20.2 1-1-2014 Dairy
1 1234 Food 1234 2.0 8.0 1-2-2014 Dairy
2 1234 Food 1234 3.0 13.0 1-3-2014 Dairy
3 789 Food 789 1.0 2.0 1-1-2014 Dairy
4 789 Food 789 2.0 3.8 1-2-2014 Dairy
5 789 Food 789 NaN NaN 1-3-2014 Dairy
6 789 Food 789 1.0 789.0 1-5-2014 Dairy

>>> sales.pop('subcat')
0 Dairy
1 Dairy
2 Dairy
3 Dairy
4 Dairy
5 Dairy
6 Dairy
Name: subcat, dtype: object

>>> sales
 UPC Category Units Sales Date
0 1234 Food 1234 5.0 20.2 1-1-2014
1 1234 Food 1234 2.0 8.0 1-2-2014
2 1234 Food 1234 3.0 13.0 1-3-2014
3 789 Food 789 1.0 2.0 1-1-2014
4 789 Food 789 2.0 3.8 1-2-2014
5 789 Food 789 NaN NaN 1-3-2014
6 789 Food 789 1.0 789.0 1-5-2014
```
To drop a column with the .drop method, simply pass it in (or a list of column names) along with setting the axis parameter to 1:

```python
>>> sales.drop(['Category', 'Units'], axis=1)
 UPC Sales Date
0 1234 20.2 1-1-2014
1 1234 8.0 1-2-2014
2 1234 13.0 1-3-2014
3 789 2.0 1-1-2014
4 789 3.8 1-2-2014
5 789 NaN 1-3-2014
6 789 789.0 1-5-2014
```

To use the final two methods of removing columns, simply create a list of desired columns. Pass that list into the .reindex method or the indexing operation:

```python
>>> cols = ['Sales', 'Date']

>>> sales.reindex(columns=cols)
 Sales Date
0 20.2 1-1-2014
1 8.0 1-2-2014
2 13.0 1-3-2014
3 2.0 1-1-2014
4 3.8 1-2-2014
5 NaN 1-3-2014
6 789.0 1-5-2014

>>> sales[cols]
 Sales Date
0 20.2 1-1-2014
1 8.0 1-2-2014
2 13.0 1-3-2014
3 2.0 1-1-2014
4 3.8 1-2-2014
5 NaN 1-3-2014
6 789.0 1-5-2014
```

**Slicing**

The pandas library provides powerful methods for slicing a data frame. The .head and .tail methods allow for pulling data off the front and end of a data frame. They come in handy when using an interpreter in combination with pandas. By default, they display only the top five or bottom five rows:

```python
>>> sales.head()
 UPC Category Units Sales Date
0 1234 Food 5.0 20.2 1-1-2014
1 1234 Food 2.0 8.0 1-2-2014
2 1234 Food 3.0 13.0 1-3-2014
3 789 Food 1.0 2.0 1-1-2014
```
Simply pass in an integer to override the number of rows to show:

```python
>>> sales.tail(2)
 UPC Category Units Sales Date
5 789 Food NaN NaN 1-3-2014
6 789 Food 1.0 789.0 1-5-2014
```

Data frames also support slicing based on index position and label. Let's use a string based index so it will be clearer what the slicing options do:

```python
>>> sales['new_index'] = list('abcdefg')
>>> df = sales.set_index('new_index')
>>> del sales['new_index']
```

To slice by position, use the `.iloc` attribute. Here we take rows in positions two up to but not including four:

```python
>>> df.iloc[2:4]
 UPC Category Units Sales Date
new_index
 c 1234 Food 3.0 13.0 1-3-2014
 d 789 Food 1.0 2.0 1-1-2014
```

**Row & Column Slicing Examples**

```python
df.iloc[2:4, 0:1] # With a : return data frames
 # Position - Half-open interval

df.loc[\'d\', \'Units\'] # Without a : return series
 # Label - Closed interval
```

Figure showing how to slice by row or column. Note that positional slicing uses the half-open interval, while label based slicing is inclusive (closed interval).

We can also provide column positions that we want to keep as well. The column positions need to follow a comma in the index operation. Here we keep rows from two up to but not including row four. We also take columns from zero up to but not including one (just the column in the zero index position):

```python
>>> df.iloc[2:4, 0:1]
```
There is also support for slicing out data by labels. Using the `.loc` attribute, we can take index values `a` through `d`:

```python
>>> df.loc['a':'d']
```

<table>
<thead>
<tr>
<th>new_index</th>
<th>UPC</th>
<th>Category</th>
<th>Units</th>
<th>Sales</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1234</td>
<td>Food</td>
<td>5.0</td>
<td>20.2</td>
<td>1-1-2014</td>
</tr>
<tr>
<td>b</td>
<td>1234</td>
<td>Food</td>
<td>2.0</td>
<td>8.0</td>
<td>1-2-2014</td>
</tr>
<tr>
<td>c</td>
<td>1234</td>
<td>Food</td>
<td>3.0</td>
<td>13.0</td>
<td>1-3-2014</td>
</tr>
<tr>
<td>d</td>
<td>789</td>
<td>Food</td>
<td>1.0</td>
<td>2.0</td>
<td>1-1-2014</td>
</tr>
</tbody>
</table>

And just like `.iloc`, `.loc` has the ability to specify columns by label. In this example we only take the `Units` column, and thus it returns a series:

```python
>>> df.loc['d', 'Units']
new_index
 d 1.0
 e 2.0
 f NaN
 g 1.0
Name: Units, dtype: float64
```

Below is a summary of the data frame slicing constructs by position and label. To pull out a subset of a data frame using the `.iloc` or `.loc` attribute, we do an index operation with `cols, rows` specifiers, where either specifier is optional.

Note, that when we only want to specify columns, but use all of the rows, we provide a lone `:` to indicate to slice out all of the rows.

In contrast to normal Python slicing, which are *half-open*, meaning take the start index and go up to, but not including the final index, indexing by labels uses the *closed interval*. A closed interval includes not only the initial location, but also the final location. Indexing by position uses the half-open interval.

The slices are specified by putting a colon between the indices or columns we want to keep. In addition, and again in contrast to Python slicing constructs, you can provide a list of index or column values, if the values are not contiguous.
**Hint**

If you want to slice out columns by value, but rows by position, you can chain index operations to `.iloc` or `.loc` together. Because, the result of the invocation is a data frame or series, we can do further filtering on the result.

Here we pull out columns `UPC` and `Sales`, but only the last 4 values:

```python
>>> df.loc[:,['UPC', 'Sales']].iloc[-4:]
```
Alternatively, we mentioned avoiding `.ix` if you can, but this might be a case where you could sneak it in:

```python
>>> df.ix[-4:, ['UPC', 'Sales']]
UPC Sales
new_index
d 789 2.0
e 789 3.8
f 789 NaN
 g 789 789.0
```

**Sorting**

Sometimes, we need to sort a data frame by index, or the values in the columns. The data frame operations are very similar to what we saw with series.

Here is the sales data frame:

```python
>>> sales
UPC Category Units Sales Date
0 1234 Food 5.0 20.2 1-1-2014
1 1234 Food 2.0 8.0 1-2-2014
2 1234 Food 3.0 13.0 1-3-2014
3 789 Food 1.0 2.0 1-1-2014
4 789 Food 2.0 3.8 1-2-2014
5 789 Food NaN NaN 1-3-2014
6 789 Food 1.0 789.0 1-5-2014
```

To sort by column, use `.sort_values`. Let's sort the UPC column:

```python
>>> sales.sort_values('UPC')
UPC Category Units Sales Date
3 789 Food 1.0 2.0 1-1-2014
4 789 Food 2.0 3.8 1-2-2014
5 789 Food NaN NaN 1-3-2014
6 789 Food 1.0 789.0 1-5-2014
0 1234 Food 5.0 20.2 1-1-2014
1 1234 Food 2.0 8.0 1-2-2014
2 1234 Food 3.0 13.0 1-3-2014
```

**Note**

Avoid using the `.sort` method. It is now deprecated, because it does an in-place sort by default. Use `.sort_values` instead.
The first parameter to .sort_values is the by argument. If we provide a list of columns it will sort by the left-most column first, and then proceed right:

```python
>>> sales.sort_values(['Units', 'UPC'])
UPC Category Units Sales Date
 3 789 Food 1.0 2.0 1-1-2014
 6 789 Food 1.0 789.0 1-5-2014
 4 789 Food 2.0 3.8 1-2-2014
 1 1234 Food 2.0 8.0 1-2-2014
 2 1234 Food 3.0 13.0 1-3-2014
 0 1234 Food 5.0 20.2 1-1-2014
 5 789 Food NaN NaN 1-3-2014
```

To sort the index, use the .sort_index method. The index in this data frame is already sorted, so we will sort it in reverse order:

```python
>>> sales.sort_index(ascending=False)
UPC Category Units Sales Date
 6 789 Food 1.0 789.0 1-5-2014
 5 789 Food NaN NaN 1-3-2014
 4 789 Food 2.0 3.8 1-2-2014
 3 789 Food 1.0 2.0 1-1-2014
 2 1234 Food 3.0 13.0 1-3-2014
 1 1234 Food 2.0 8.0 1-2-2014
 0 1234 Food 5.0 20.2 1-1-2014
```

**Summary**

In this chapter we examined quite a bit of the methods on the DataFrame object. We saw how to examine the data, loop over it, broadcast operations, and serialize it. We also looked at index operations that were very similar to the Series index operations. We saw how to do CRUD operations and ended with slicing and sorting data.

In the next chapter, we will explore some of the statistical functionality found in the data frame.
If you are doing data science or statistics with Pandas, you are in luck, because the data frame comes with basic functionality built in.

In this section, we will examine snow totals from Alta for the past couple years. I scraped this data off the Utah Avalanche Center website\(^\text{16}\), but will use the `.read_table` function of Pandas to create a data frame.

```python
>>> data = '''year	inches	location
... 2006	633.5	utah
... 2007	356	utah
... 2008	654	utah
... 2009	578	utah
... 2010	430	utah
... 2011	553	utah
... 2012	329.5	utah
... 2013	382.5	utah
... 2014	357.5	utah
... 2015	267.5	utah'''

>>> snow = pd.read_table(StringIO(data))

>>> snow
year inches location
0 2006 633.5 utah
1 2007 356.0 utah
2 2008 654.0 utah
3 2009 578.0 utah
4 2010 430.0 utah
5 2011 553.0 utah
6 2012 329.5 utah
7 2013 382.5 utah
8 2014 357.5 utah
9 2015 267.5 utah
```

**describe and quantile**

One of the methods I use a lot is the `.describe` method. This method provides you with an overview of your data. When I load a new data set, running `.describe` on it is typically the first thing I do.

With this dataset, the year column, although being numeric, when fed through `describe` is not too interesting. But, this method is very useful to
quickly view the spread of snowfalls over ten years at Alta:

```python
>>> snow.describe()

+-------------+----------+----------+
<table>
<thead>
<tr>
<th>year</th>
<th>inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>10.00000</td>
</tr>
<tr>
<td>mean</td>
<td>2010.5000</td>
</tr>
<tr>
<td>std</td>
<td>3.02765</td>
</tr>
<tr>
<td>min</td>
<td>2006.0000</td>
</tr>
<tr>
<td>25%</td>
<td>2008.2500</td>
</tr>
<tr>
<td>50%</td>
<td>2010.5000</td>
</tr>
<tr>
<td>75%</td>
<td>2012.7500</td>
</tr>
<tr>
<td>max</td>
<td>2015.0000</td>
</tr>
</tbody>
</table>
```

Note that the location column, that has a string type, is ignored by default. If we set the `include` parameter to `'all'`, then we also get summary statistics for categorical and string columns:

```python
>>> snow.describe(include='all')

+-------------+----------+----------+----------+----------+
<table>
<thead>
<tr>
<th>year</th>
<th>inches</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>10.00000</td>
<td></td>
</tr>
<tr>
<td>unique</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>top</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>freq</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2010.5000</td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>3.02765</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>2006.0000</td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>2008.2500</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>2010.5000</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>2012.7500</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>2015.0000</td>
<td></td>
</tr>
</tbody>
</table>
```

The `.quantile` method, by default shows the 50% quantile, though the `q` parameter can be specified to get different levels:

```python
>>> snow.quantile()

+-------------+----------+
| year | 2010.50 |
| inches | 406.25 |
| dtype | float64 |
```

Here we get the 10% and 90% percentile levels. We can see that if 635 inches fall, we are at the 90% level:

```python
>>> snow.quantile(q=[.1, .9])

+-------------+----------+
| year | 2006.90 |
| inches | 323.30 |
| | 2014.1 |
| | 635.55 |
```

**Note**

Changing the `q` parameter to a list, rather than a scalar, makes the `.quantile` method return a data frame, rather than a series.
To just get counts of non-empty cells, use the .count method:

```python
>>> snow.count()
year 10
inches 10
location 10
dtype: int64
```

If you have data and want to know whether any of the values in the columns evaluate to `True` in a boolean context, use the .any method:

```python
>>> snow.any()
year True
inches True
location True
dtype: bool
```

This method can also be applied to a row, by using the `axis=1` parameter:

```python
>>> snow.any(axis=1)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 True
dtype: bool
```

Likewise, there is a corresponding .all method to indicate whether all of the values are truthy:

```python
>>> snow.all()
year True
inches True
location True
dtype: bool
```

```python
>>> snow.all(axis=1)
0 True
1 True
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 True
```

133
Both `.any` and `.all` are pretty boring in this data set because they are all 
truthy (non-empty or not false).

**rank**

The `.rank` method goes through every column and assigns a number to the 
rank of that cell within the column. Again, the year column isn't 
particularly useful here:

```
>>> snow.rank()
 year inches location
 0 1.0 9.0 5.5
 1 2.0 3.0 5.5
 2 3.0 10.0 5.5
 3 4.0 8.0 5.5
 4 5.0 6.0 5.5
 5 6.0 7.0 5.5
 6 7.0 2.0 5.5
 7 8.0 5.0 5.5
 8 9.0 4.0 5.5
 9 10.0 1.0 5.5
```

Because the default behavior is to rank by ascending order, this might 
be the wrong order for snowfall (unless you are ranking worst snowfall). 
To fix this, set the `ascending` parameter to `False`:

```
>>> snow.rank(ascending=False)
 year inches location
 0 10.0 2.0 5.5
 1 9.0 8.0 5.5
 2 8.0 1.0 5.5
 3 7.0 3.0 5.5
 4 6.0 5.0 5.5
 5 5.0 4.0 5.5
 6 4.0 9.0 5.5
 7 3.0 6.0 5.5
 8 2.0 7.0 5.5
 9 1.0 10.0 5.5
```

Note that because the location columns are all the same, the rank of that 
column is the average by default. To change this behavior, we can set the 
`method` parameter to 'min', 'max', 'first', or 'dense' to get the lowest, 
highest, order of appearance, or ranking by group (instead of items) 
respectively ('average' is the default):

```
>>> snow.rank(method='min')
 year inches location
```
Specifying method='first' fails with non-numeric data:

```python
>>> snow.rank(method='first')
Traceback (most recent call last):
 ...
ValueError: first not supported for non-numeric data
```

### clip

Occasionally, there are outliers in the data. If this is problematic, the `.clip` method trims a column (or row if `axis=1`) to certain values:

```python
>>> snow.clip(lower=400, upper=600)
Traceback (most recent call last):
 ...
TypeError: unorderable types: str() >= int()
```

For our data, clipping fails as `location` is a column containing string types. Unless your columns are semi-homogenous, you might want to run the `.clip` method on the individual series or the subset of columns that need to be clipped:

```python
>>> snow[['inches']].clip(lower=400, upper=600)
inches
0 600.0
1 400.0
2 600.0
3 578.0
4 430.0
5 553.0
6 400.0
7 400.0
8 400.0
9 400.0
```

### Correlation and Covariance
We've already seen that the series object can perform a Pearson correlation with another series. The data frame offers similar functionality, but it will do a **pairwise** correlation with all of the numeric columns. In addition, it will perform a Kendall or Spearman correlation, when those strings are passed to the optional *method* parameter:

```python
>>> snow.corr()
year inches
year 1.000000 -0.698064
inches -0.698064 1.000000

>>> snow.corr(method='spearman')
year inches
year 1.000000 -0.648485
inches -0.648485 1.000000
```

If you have two data frames that you want to correlate, you can use the `.corrwith` method to compute column-wise (the default) or row-wise (when `axis=1`) Pearson correlations:

```python
>>> snow2 = snow[['inches']] - 100
>>> snow.corrwith(snow2)
inches 1.0
year NaN
dtype: float64
```

The `.cov` method of the data frame computes the pair-wise covariance (non-normalized correlation):

```python
>>> snow.cov()
year inches
year 9.166667 -292.416667
inches -292.416667 19142.669444
```

**Reductions**

There are various *reducing* methods on the data frame, that collapse columns into a single value. An example is the `.sum` method, which will apply the add operation to all members of columns. Note, that by default, string columns are concatenated:

```python
>>> snow.sum()
year 20105
inches 4541.5
location utahutahutahutahutahutahutahutahutahutahutahutahutahutahutahutahutahutahutah
 dtype: object
```

If you prefer only numeric sums, use `numeric_only=True` parameter:
To apply a multiplicative reduction, use the `.prod` method. Note that the product ignores non-numeric rows:

```python
>>> snow.prod()
year 1.079037e+33
inches 2.443332e+26
dtype: float64
```

The `.describe` method is the workhorse for quickly summarizing tables of data. If you need the individual measures, pandas provides those as well. This method includes: count, mean, standard deviation, minimum, 25% quantile, median, 75% quantile, and maximum value. Their corresponding methods are `.count`, `.mean`, `.std`, `.min`, `.quantile(q=.25)`, `.median`, `.quantile(q=.75)`, and `.max`.

One nicety of these individual methods is that you can pass `axis=1` to get the reduction across the rows, rather than the columns:

```python
>>> snow.mean()
year 2010.50
inches 454.15

dtype: float64
```

```python
>>> snow.mean(axis=1)
0 1319.75
1 1181.50
2 1331.00
3 1293.50
4 1220.00
5 1282.00
6 1170.75
7 1197.75
8 1185.75
9 1141.25
dtype: float64
```

Variance is a measure that is not included in the `.describe` method output. However, this calculation is available as a method named `.var`:

```python
>>> snow.var()
year 9.166667
inches 19142.669444
dtype: float64
```
Other measures for describing dispersion and distributions are \texttt{.mad}, \texttt{.skew}, and \texttt{.kurt}, for mean absolute deviation, skew, and kurtosis respectively:

\begin{verbatim}
>>> snow.mad()
   year   2.50
   inches 120.38
   dtype: float64

>>> snow.skew()
   year   0.000000
   inches  0.311866
   dtype: float64

>>> snow.kurt()
   year   -1.200000
   inches -1.586098
   dtype: float64
\end{verbatim}

As mentioned, the maximum and minimum values are provided by \texttt{describe}. If you prefer to know the index of those values, you can use the \texttt{.idxmax} and \texttt{.idxmin} methods respectively. Note that these fail with non-numeric columns:

\begin{verbatim}
>>> snow.idxmax()
Traceback (most recent call last):
...  ValueError: could not convert string to float: 'utah'

>>> snow[['year', 'inches']].idxmax()
   year   9
   inches  2
   dtype: int64
\end{verbatim}

**Summary**

The pandas library provides basic statistical operations out of the box. This chapter looked at the \texttt{.describe} method, which is one of the first tools I reach for when looking at new data. We also saw how to sort data, clip it to certain ranges, perform correlations, and reduce columns.

In the next chapter, we will look at the more advanced topics of changing the shape of the data.

16 - \url{https://utahavalanchecenter.org/alta-monthly-snowfall}
Grouping, Pivoting, and Reshaping

One of the more advanced features of pandas is the ability to perform operations on groups of data frames. That is a little abstract, but power users from Excel are familiar with pivot tables, and pandas gives us this same functionality.

For this section we will use data representing student scores:

```python
>>> scores = pd.DataFrame({
... 'name': ['Adam', 'Bob', 'Dave', 'Fred'],
... 'age': [15, 16, 16, 15],
... 'test1': [95, 81, 89, None],
... 'test2': [80, 82, 84, 88],
... 'teacher': ['Ashby', 'Ashby', 'Jones', 'Jones']})
```

The data looks like this:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>TEST1</th>
<th>TEST2</th>
<th>TEACHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>15</td>
<td>95</td>
<td>80</td>
<td>Ashby</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>81</td>
<td>82</td>
<td>Ashby</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>89</td>
<td>84</td>
<td>Jones</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>88</td>
<td></td>
<td>Jones</td>
</tr>
</tbody>
</table>

Note that Fred is missing a score from test1. That could represent that he did not take the test, or that someone forget to enter his score.

Reducing Methods in groupby

The lower level workhorse that provides the ability to group data frames by column values, then merge them back into a result is the `.groupby` method. As an example, on the scores data frame, we will compute the median scores for each teacher. First we call `.groupby` and then invoke `.median` on the result:

```python
>>> scores.groupby('teacher').median()
```

139
<table>
<thead>
<tr>
<th>teacher</th>
<th>age</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashby</td>
<td>15.5</td>
<td>88.0</td>
<td>81.0</td>
</tr>
<tr>
<td>Jones</td>
<td>15.5</td>
<td>89.0</td>
<td>86.0</td>
</tr>
</tbody>
</table>
Figure showing the split, apply, and combine steps on a groupby object. Note that there are various built-in methods, and also the apply method, which allows arbitrary operations.

This included the age column, to ignore that we can slice out just the test columns:

```python
>>> scores.groupby('teacher').median()[['test1', 'test2']]
 test1 test2
teacher
Ashby 88.0 81.0
Jones 89.0 86.0
```

The result of calling `.groupby` is a `GroupBy` object. In this case, the object has grouped all the rows with the same teach together. Calling `.median` on the `GroupBy` object returns a new `DataFrame` object that has the median score for each teacher group.
Grouping can be very powerful, and you can use multiple columns to group by as well. To find the median values for every age group for each teacher, simply group by teacher and age:

```python
>>> scores.groupby(['teacher', 'age']).median()

<table>
<thead>
<tr>
<th>teacher</th>
<th>age</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashby</td>
<td>15</td>
<td>95.0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>81.0</td>
<td>82</td>
</tr>
<tr>
<td>Jones</td>
<td>15</td>
<td>NaN</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>89.0</td>
<td>84</td>
</tr>
</tbody>
</table>
```

**Note**

When you group by multiple columns, the result has a hierarchical index or *multi-level index*.

If we want both the minimum and maximum test scores by teacher, we use the `.agg` method and pass in a list of functions to call:

```python
>>> scores.groupby(['teacher', 'age']).agg([min, max])

<table>
<thead>
<tr>
<th>name</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>teacher</td>
<td>age</td>
<td></td>
</tr>
<tr>
<td>Ashby</td>
<td>15</td>
<td>Adam</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Bob</td>
</tr>
<tr>
<td>Jones</td>
<td>15</td>
<td>Fred</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Dave</td>
</tr>
</tbody>
</table>
```

The groupby object has many methods that reduce group values to a single value, they are:

<table>
<thead>
<tr>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>.all</td>
<td>Boolean if all cells in group are True</td>
</tr>
<tr>
<td>.any</td>
<td>Boolean if any cells in group are True</td>
</tr>
<tr>
<td>.count</td>
<td>Count of non null values</td>
</tr>
<tr>
<td>.size</td>
<td>Size of group (includes null)</td>
</tr>
<tr>
<td>.idxmax</td>
<td>Index of maximum values</td>
</tr>
<tr>
<td>.idxmin</td>
<td>Index of minimum values</td>
</tr>
<tr>
<td>.quantile</td>
<td>Quantile (default of .5) of group</td>
</tr>
</tbody>
</table>
.agg(func)  Apply func to each group. If func returns scalar, then reducing
.apply(func) Use split-apply-combine rules
.last       Last value
.nth        Nth row from group
.max        Maximum value
.min        Minimum value
.mean       Mean value
.median     Median value
.sem        Standard error of mean of group
.std        Standard deviation
.var        Variation of group
.prod       Product of group
.sum        Sum of group

**Pivot Tables**

Using a pivot table, we can generalize certain groupby behaviors. To get the median teacher scores we can run the following:

```python
>>> scores.pivot_table(index='teacher',
... values=['test1', 'test2'],
... aggfunc='median')
teacher test1 test2
Ashby 88.0 81
Jones 89.0 86
```
Figure showing different parameters provided to `pivot_table` method.

If we want to aggregate by teacher and age, we simply use a list with both of them for the `index` parameter:

```python
>>> scores.pivot_table(index=['teacher', 'age'],
 values=['test1', 'test2'],
 aggfunc=['median'])
```

<table>
<thead>
<tr>
<th>teacher</th>
<th>age</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashby</td>
<td>15</td>
<td>95.0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>81.0</td>
<td>82</td>
</tr>
<tr>
<td>Jones</td>
<td>15</td>
<td>NaN</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>89.0</td>
<td>84</td>
</tr>
</tbody>
</table>

If we want to apply multiple functions, just use a list of them. Here, we look at the minimum and maximum test scores by teacher:

```python
>>> scores.pivot_table(index='teacher',
 values=['test1', 'test2'],
 aggfunc=[min, max])
```

<table>
<thead>
<tr>
<th>teacher</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashby</td>
<td>81.0</td>
<td>80</td>
</tr>
<tr>
<td>Jones</td>
<td>89.0</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>89.0</td>
<td>88</td>
</tr>
</tbody>
</table>
We can see that pivot table and group by behavior is very similar. Many spreadsheet power users are more familiar with the declarative style of .pivot_table, while programmers not accustomed to pivot tables prefer using group by semantics.

One additional feature of pivot tables is the ability to add summary rows. Simply by setting margins=True we get this functionality:

```python
>>> scores.pivot_table(index='teacher',
... values=['test1', 'test2'],
... aggfunc='median', margins=True)
test1 test2
teacher
Ashby 88.0 81.0
Jones 89.0 86.0
All 89.0 83.0
```
Melting Data

In OLAP terms, there is a notion of a fact and a dimension. A fact is a value that is measured and reported on. A dimension is a group of values the describe the conditions of the fact. In a sales scenario, typical facts would be the number of sales of an item and the cost of the item. The dimensions might be the store where the item was sold, the date, and the customer.

The dimensions can then be sliced to dissect the data. We might want to view sales by store. A dimension may be hierarchical, a store could have a region, zip code, or state. We could view sales by any of those dimensions.

The scores data is in a wide format (sometimes called stacked or record form). In contrast to a "long" format (sometimes called tidy form), where each row contains a single fact (with perhaps other variables describing the dimensions). If we consider test score to be a fact, this wide format has more than one fact in a row, hence it is wide.
Often, tools require that data be stored in a long format, and only have one fact per row. This format is *denormalized* and repeats many of the dimensions, but makes analysis easier.

Our wide version looks like:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>TEST1</th>
<th>TEST2</th>
<th>TEACHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>15</td>
<td>95</td>
<td>80</td>
<td>Ashby</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>81</td>
<td>82</td>
<td>Ashby</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>89</td>
<td>84</td>
<td>Jones</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>88</td>
<td></td>
<td>Jones</td>
</tr>
</tbody>
</table>

A long version of our scores might look like this:

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>TEST</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>15</td>
<td>test1</td>
<td>95</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>test1</td>
<td>81</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>test1</td>
<td>89</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>test1</td>
<td>NaN</td>
</tr>
<tr>
<td>Adam</td>
<td>15</td>
<td>test2</td>
<td>80</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>test2</td>
<td>82</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>test2</td>
<td>84</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>test2</td>
<td>88</td>
</tr>
</tbody>
</table>

Using the `melt` function in pandas, we can tweak the data so it becomes long. Since I am used to OLAP parlance (facts and dimensions), I will use those terms to explain how to use `melt`.

In the `scores` data frame, we have facts in the `test1` and `test2` column. We want to have a new data frame, where the test name is pulled out into its own column, and the scores for the test are in a single column. To do this, we put the list of fact columns in the `value_vars` parameter. Any dimensions we want to keep should be listed in the `id_vars` parameter.
Figure showing columns that are preserved during melting, \texttt{id-vars}, and column names that are pulled into columns, \texttt{value-vars}.

Here we keep name and age as dimensions, and pull out the test scores as facts:

```python
>>> pd.melt(scores, id_vars=['name', 'age'], value_vars=['test1', 'test2'])
```

<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>15</td>
<td>test1</td>
<td>95.0</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>test1</td>
<td>81.0</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>test1</td>
<td>89.0</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>test1</td>
<td>NaN</td>
</tr>
<tr>
<td>Adam</td>
<td>15</td>
<td>test2</td>
<td>80.0</td>
</tr>
<tr>
<td>Bob</td>
<td>16</td>
<td>test2</td>
<td>82.0</td>
</tr>
<tr>
<td>Dave</td>
<td>16</td>
<td>test2</td>
<td>84.0</td>
</tr>
<tr>
<td>Fred</td>
<td>15</td>
<td>test2</td>
<td>88.0</td>
</tr>
</tbody>
</table>

If we want to change the description of the fact from \texttt{variable} to a more descriptive name, pass that as the \texttt{var-name} parameter. To change the name of the fact column (it defaults to \texttt{value}), use the \texttt{value-name} parameter:
```python
>>> pd.melt(scores, id_vars=['name', 'age'],
... value_vars=['test1', 'test2'],
... var_name='test', value_name='score')
name age test score
0 Adam 15 test1 95.0
1 Bob 16 test1 81.0
2 Dave 16 test1 89.0
3 Fred 15 test1 NaN
4 Adam 15 test2 80.0
5 Bob 16 test2 82.0
6 Dave 16 test2 84.0
7 Fred 15 test2 88.0
```

**Note**

Long data is also referred to as *tidy* data. See the Tidy Data paper \[17\] by Hadley Wickham.

**Converting Back to Wide**

Using a pivot table, we can go from long format to wide format. It is a little more involved going in the reverse direction:

```python
>>> long_df = pd.melt(scores, id_vars=['name', 'age'],
... value_vars=['test1', 'test2'],
... var_name='test', value_name='score')
```

First, we pivot, using the dimensions as the *index* parameter, the name of the fact column name as the *columns* parameter, and the fact column as the *values* parameter:

```python
>>> wide_df = long_df.pivot_table(index=['name', 'age'],
... columns=['test'],
... values=['score'])
```

```python
>>> wide_df
score
test test1 test2
name age
Adam 15 95.0 80.0
Bob 16 81.0 82.0
Dave 16 89.0 84.0
Fred 15 NaN 88.0
```

Note that this creates *hierarchical column labels*, (or *multi-level*) and *hierarchical index*. To flatten the index, use the `.reset_index` method. It will take the existing index, and make a column (or columns if it is hierarchical):
To flatten the nested columns, we can use the `.get_level_values` method from the `column` attribute. This is a little trickier, because we want to merge into the level 1 columns the values from level 0, if level 1 is the empty string. I'm going to use a `conditional expression` inside of a `list comprehension` to do the job:

```python
>>> cols = wide_df.columns
>>> cols.get_level_values(0)
Index(['name', 'age', 'score', 'score'], dtype='object')

>>> cols.get_level_values(1)
Index(['', '', 'test1', 'test2'], dtype='object', name='test')

>>> l1 = cols.get_level_values(1)
>>> l0 = cols.get_level_values(0)
>>> names = [x[1] if x[1] else x[0] for x in zip(l0, l1)]
>>> names
['name', 'age', 'test1', 'test2']
```

Finally, set the new names as the column names:

```python
>>> wide_df.columns = names
>>> wide_df
 name age test1 test2
 0 Adam 15.0 95.0 80.0
 1 Bob 16.0 81.0 82.0
 2 Dave 16.0 89.0 84.0
 3 Fred 15.0 NaN 88.0
```

**Creating Dummy Variables**

A `dummy variable` (sometimes known as an indicator variable) is a variable that has a value of 1 or 0. This variable typically indicates whether the presence or absence of a categorical feature is found. For example, in the `scores` data frame, we have an age column. Some systems might prefer to have a column for every age (15 and 16 in this case), with a 1 or 0 to indicate whether the row has that age. This can create pretty sparse matrixes if there are many categories.
Many machine learning models require that their input be crafted in this way. As pandas is often used to prep data for models, let's see how to do it with the age column. The `get_dummies` function provides what we need:

```python
>>> pd.get_dummies(scores, columns=['age'], prefix='age')
name teacher test1 test2 age_15 age_16
0 Adam Ashby 95.0 80 1.0 0.0
1 Bob Ashby 81.0 82 0.0 1.0
2 Dave Jones 89.0 84 0.0 1.0
3 Fred Jones NaN 88 1.0 0.0
```

The `columns` parameter refers to a list (note a single string will fail) of columns we want to change into dummy columns. The `prefix` parameter specifies what we want to prefix each of the category values with when they are turned into column names.

**Undoing Dummy Variables**

Creating dummy variables is easy. Undoing them is harder. Here is a function that will undo it:

```python
>>> def undummy(df, prefix, new_col_name, val_type=float):
... ''' df - dataframe with dummy columns
... prefix - prefix of dummy columns
... new_col_name - column name to replace dummy columns
... val_type - callable type for new column
... '''
... dummy_cols = [col for col in df.columns
... if col.startswith(prefix)]
... idx2val = {i:val_type(col[len(prefix):]) for i, col
... in enumerate(dummy_cols)}
... def get_index(vals): # idx of dummy col to use
... return list(vals).index(1)
... # using the dummy_cols lookup the new value by idx
... ser = df[dummy_cols].apply(
... lambda x: idx2val.get(get_index(x), None), axis=1)
... df[new_col_name] = ser
... df = df.drop(dummy_cols, axis=1)
... return df
```

```python
>>> dum = pd.get_dummies(scores, columns=['age'], prefix='age')
```

```python
>>> undummy(dum, 'age_', 'age')
name teacher test1 test2 age
0 Adam Ashby 95.0 80 15.0
1 Bob Ashby 81.0 82 16.0
2 Dave Jones 89.0 84 16.0
3 Fred Jones NaN 88 15.0
```

**Stacking and Unstacking**

---

151
Another mechanism to tweak data is to "stack" and "unstack" it. This is particularly useful when you have multi-level indices, which you get from pivot tables if you pass in a list for the `index` parameter.

Unstacking takes a dataset that has a multi-level index and pulls out the inner most level of the index and makes it the inner most level the columns. Stacking does the reverse. See the image for a visual example.
Figure showing how to stack and unstack data. Stack takes the innermost column label and places them in the index. Unstack takes the innermost index labels and places them in the columns.

Summary

This chapter covered some more advanced topics of pandas. We saw how to group by columns and perform reductions. We also saw how some of
these group by operations can be done with the `.pivot_table` method. Then we looked at *melting* data, creating dummy variables, and stacking.

Often, we find you need your data organized slightly differently, you can use one of these tools to re-arrange it for you. It will be quicker, and have less code than an imperative solution requiring iterating over the values manually. But, it might require a little while pondering how to transform the data. Play around with these methods and check out other examples of how people are using them in the wild for inspiration.

17 - [http://vita.had.co.nz/papers/tidy-data.html](http://vita.had.co.nz/papers/tidy-data.html)
Dealing With Missing Data

More often than I would like, I spend time being a data janitor. Cleaning up, removing, updating, and tweaking data I need to deal with. This can be annoying, but luckily pandas has good support for these actions. We've already seen much of this type of work. In this section we will discuss dealing with missing data.

Let's start out by looking a simple data frame with missing data. I'll use the StringIO class and the pandas read_table function to simulate reading tabular data:

```python
>>> import io
>>> data = '''Name|Age|Color
... Fred|22|Red
... Sally|29|Blue
... George|24|
... Fido||Black'''

>>> df = pd.read_table(io.StringIO(data), sep='|')
```

This data is missing some values:

```python
>>> df
 Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 NaN
3 Fido NaN Black
```

Data can be missing for many reasons. Here are a few, though there are more:

- User error - User did not enter data
- Programming error - Logic drops data
- Integration error - When integrating data systems, syncing is broken
- Hardware issues - Storage devices out of space
- Measurement error - When measuring amounts, there might be a difference between 0 and a lack of measurement

Perhaps more insidious is when you are missing (a big chunk of) data and don't even notice it. I've found that plotting can be a useful tool to visually see holes in the data. Below we will discuss a few more.

In our `df` data, one might assume that there should be an age for every row. Every living thing has an age, but Fido's is missing. Is that because he didn't want anyone to know how old he was? Maybe he doesn't know his birthday? Maybe he isn't a human, so giving him an age doesn't make sense. To effectively deal with missing data, it is useful to determine which data is missing and why it is missing. This will aid in deciding what to do with the missing data. Unfortunately, this book can not help with that. That requires sleuthing and often non-programming related skills.

**Finding Missing Data**

The `.isnull` method of a data frame returns a data frame filled with boolean values. The cells are True where the data is missing:

```python
>>> df.isnull()
Name Age Color
0 False False False
1 False False False
2 False False True
3 False True False
```

With our small dataset we can visually inspect that there is missing data. With larger datasets of many columns and perhaps millions of rows, inspection doesn't work as well. Applying the `.any` method to the result will give you a series that has the column names as index labels and boolean values that indicate whether a column has missing values:

```python
>>> df.isnull().any()
Name False
Age True
Color True
dtype: bool
```

**Dropping Missing Data**
Dropping rows with missing data is straightforward. To drop any row that is missing data, simply use the `.dropna` method:

```python
>>> df.dropna()
Name Age Color
 0 Fred 22.0 Red
 1 Sally 29.0 Blue
```

To be more selective, we can use the result of `.notnull`. This is the complement of `.isnull`. With this data frame in hand, we can simply choose which column to mask by. We can remove missing ages. Note that the column type of `Age` will be a float and not an integer type, even after we removed the `NaN` that caused the coercion to float in the first place:

```python
>>> valid = df.notnull()
>>> df[valid.Age]
Name Age Color
 0 Fred 22.0 Red
 1 Sally 29.0 Blue
 2 George 24.0 NaN
```

Or we can get rows for valid colors by filtering with the `Color` column of the `valid` data frame:

```python
>>> df[valid.Color]
Name Age Color
 0 Fred 22.0 Red
 1 Sally 29.0 Blue
 3 Fido NaN Black
```

What if you wanted to get the rows that were valid for both age and color? You could combine the column masks using a boolean and operator (`&`):

```python
>>> mask = valid.Age & valid.Color
>>> mask
0 True
1 True
2 False
3 False
dtype: bool
>>> df[mask]
Name Age Color
 0 Fred 22.0 Red
 1 Sally 29.0 Blue
```
In this case, the result is the same as .dropna, but in other cases it might be ok to keep missing values around in certain columns. When that need arises, .dropna is too heavy-handed, and you will need to be a little more fine grained with your mask.

**Note**
In pandas, there is often more than one way to do something. Another option to combine the two column masks would be like this. Use the .apply method on the columns with the Python built-in function all. To collapse these boolean values along the row, make sure you pass the axis=1 parameter:

```python
>>> mask = valid[['Age', 'Color']].apply(all, axis=1)
>>> mask
0 True
1 True
2 False
3 False
dtype: bool
```

In general, I try to prefer the simplest method. In this case, that is the & operator. If you needed to apply a user defined function across the row to determine if a row is valid, then .apply would be a better choice.

**Inserting Data for Missing Data**
Continuing on with this data, we will examine methods to fill in the missing data. Below is the data frame:

```python
>>> df
 Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 NaN
3 Fido NaN Black
```

The easiest method to replace missing data is via the .fillna method. With a scalar argument it will replace all missing data with that value:

```python
>>> df.fillna('missing')
```

158
<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>22</td>
<td>Red</td>
</tr>
<tr>
<td>Sally</td>
<td>29</td>
<td>Blue</td>
</tr>
<tr>
<td>George</td>
<td>24</td>
<td>missing</td>
</tr>
<tr>
<td>Fido</td>
<td>missing</td>
<td>Black</td>
</tr>
</tbody>
</table>

To specify values on a per column basis, pass in a dictionary to `.fillna`:

```python
>>> df.fillna({'Age': df.Age.median(),
 'Color': 'Pink'})
Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 Pink
3 Fido 24.0 Black
```

An alternate method of replacing missing data is to use the `fillna` method with either `ffill` or `bfill`. These options do either a forward fill (take the value before the missing value) or backwards fill (use the value after the missing value) respectively:

```python
>>> df.fillna(method='ffill')
Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 Blue
3 Fido 24.0 Black

>>> df.fillna(method='bfill')
Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 Black
3 Fido NaN Black
```

**Note**

A `ffill` of `bfill` is not guaranteed to insert data if the first or last value is missing. The `.fillna` call with `bfill` above illustrates this.

This is a small example of an operation that you cannot blindly apply to a dataset. Just because it worked on a past dataset, it is not a guarantee that it will work on a future dataset.

If your data is organized row-wise then providing `axis=1` will fill along the row axis:
```python
>>> df.fillna(method='ffill', axis=1)
 Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0
3 Fido 24.0 Black
```

If you have numeric data that has some ordering, then another option is the `.interpolate` method. This will fill in values based on the `method` parameter provided:

```python
>>> df.interpolate()
 Name Age Color
0 Fred 22.00 Red
1 Sally 29.00 Blue
2 George 24.00 NaN
3 Fido 24.00 Black
```

Below are tables describing the different interpolate options for `method`:

<table>
<thead>
<tr>
<th>METHOD</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>Treat values as evenly spaced (default)</td>
</tr>
<tr>
<td>time</td>
<td>Fill in values based on time index</td>
</tr>
<tr>
<td>values/index</td>
<td>Use the index to fill in blanks</td>
</tr>
</tbody>
</table>

If you have scipy installed you can use the following additional options:

<table>
<thead>
<tr>
<th>METHOD</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest</td>
<td>Use nearest data point</td>
</tr>
<tr>
<td>zero</td>
<td>Zero order spline (use last value seen)</td>
</tr>
<tr>
<td>slinear</td>
<td>Spline interpolation of first order</td>
</tr>
<tr>
<td>quadratic</td>
<td>Spline interpolation of second order</td>
</tr>
<tr>
<td>cubic</td>
<td>Spline interpolation of third order</td>
</tr>
<tr>
<td>polynomial</td>
<td>Polynomial interpolation (pass order param)</td>
</tr>
<tr>
<td>spline</td>
<td>Spline interpolation (pass order param)</td>
</tr>
<tr>
<td>barycentric</td>
<td>Use Barycentric Lagrange Interpolation</td>
</tr>
<tr>
<td>krogh</td>
<td>Use Krogh Interpolation</td>
</tr>
<tr>
<td>piecewise_polynomial</td>
<td>Use Piecewise Polynomial Interpolation</td>
</tr>
</tbody>
</table>
Finally, you can use the `.replace` method to fill in missing values:

```python
>>> df.replace(np.nan, value=-1)
Name Age Color
0 Fred 22.0 Red
1 Sally 29.0 Blue
2 George 24.0 -1
3 Fido -1.0 Black
```

Note that if you try to replace `None`, pandas will throw an error, as this is the default value for the `value` parameter:

```python
>>> df.replace(None, value=-1)
Traceback (most recent call last):
 ...
 TypeError: 'regex' must be a string or a compiled regular
expression or a list or dict of strings or regular expressions,
you passed a 'bool'
```

**Summary**

In the real world data is messy. Sometimes you have to tweak it slightly or filter it. And sometimes, it is just missing. In these cases, having insight into your data and where it came from is invaluable.

In this chapter we saw how to find missing data. We saw how to simply drop that data that is incomplete. We also saw methods for filling in the missing data.
Joining Data Frames

DATA FRAMES HOLD TABULAR DATA. DATABASES HOLD TABULAR DATA. YOU CAN perform many of the same operations on data frames that you do to database tables. In this section we will examine joining data frames.

Here are the two tables we will examine:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>COLOR</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Blue</td>
<td>John</td>
</tr>
<tr>
<td>1</td>
<td>Blue</td>
<td>George</td>
</tr>
<tr>
<td>2</td>
<td>Purple</td>
<td>Ringo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CARCOLOR</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Red</td>
<td>Paul</td>
</tr>
<tr>
<td>1</td>
<td>Blue</td>
<td>George</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Ringo</td>
</tr>
</tbody>
</table>

Adding Rows to Data Frames

Let's assume that we have two data frames that we want to combine into a single data frame, with rows from both. The simplest way to do this is with the concat function. Below, we create two data frames:

```python
>>> df1 = pd.DataFrame({'name': ['John', 'George', 'Ringo'],
 'color': ['Blue', 'Blue', 'Purple']})
>>> df2 = pd.DataFrame({'name': ['Paul', 'George', 'Ringo'],
 'carcolor': ['Red', 'Blue', np.nan],
 'index': [3, 1, 2]})
```

The concat function in the pandas library accepts a list of data frames to combine. It will find any columns that have the same name, and use a single column for each of the repeated columns. In this case name is common to both data frames:
>>> pd.concat([df1, df2])
carcolor   color    name
0      NaN    Blue    John
1      NaN    Blue  George
2      NaN  Purple   Ringo
3    Red     NaN    Paul
1    Blue     NaN  George
2      NaN     NaN   Ringo

Note that .concat preserves index values, so the resulting data frame has duplicate index values. If you would prefer an error when duplicates appear, you can pass the verify_integrity=True parameter setting:

>>> pd.concat([df1, df2], verify_integrity=True)
Traceback (most recent call last):
  ... ValueError: Indexes have overlapping values: [1, 2]

Alternatively, if you would prefer that pandas create new index values for you, pass in ignore_index=True as a parameter:

>>> pd.concat([df1, df2], ignore_index=True)
carcolor   color    name
0      NaN    Blue    John
1      NaN    Blue  George
2      NaN  Purple   Ringo
3    Red     NaN    Paul
4    Blue     NaN  George
5      NaN     NaN   Ringo

Adding Columns to Data Frames

The concat function also has the ability to align data frames based on index values, rather than using the columns. By passing axis=1, we get this behavior:

>>> pd.concat([df1, df2], axis=1)
color    name    carcolor    name
0    Blue    John      NaN     NaN
1    Blue  George     Blue  George
2    Purple   Ringo     NaN   Ringo
3        NaN     NaN      Red    Paul

Note that this repeats the name column. Using SQL, we can join two database tables together based on common columns. If we want to perform a join like a database join on data frames, we need to use the .merge method. We will cover that in the next section.

Joins
Databases have different types of joins. The four common ones include inner, outer, left, and right. The data frame has a method to support these operations. Sadly, it is not the .join method, but rather the .merge method.
Figure showing how the result of four different joins: inner, outer, left, and right.

**Note**

The `.join` method is meant for joining based on index, rather than columns. In practice I find myself joining based on columns instead of index values.

To use the `.join` method to join based on column values, you need to set that column as the index first:

```python
>>> df1.set_index('name').join(df2.set_index('name'))
```

<table>
<thead>
<tr>
<th>name</th>
<th>color</th>
<th>carcolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Blue</td>
<td>NaN</td>
</tr>
<tr>
<td>George</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Ringo</td>
<td>Purple</td>
<td>NaN</td>
</tr>
</tbody>
</table>

It it easier to just use the `.merge` method.
The default join type for the .merge method is an inner join. The .merge method looks for common column names. It then aligns the values in those columns. If both data frames have values that are the same, they are kept along with the remaining columns from both data frames. Rows with values in the aligned columns that only appear in one data frame are discarded:

```python
>>> df1.merge(df2) # inner join
color name carcolor
0 Blue George Blue
1 Purple Ringo NaN
```

When the how='outer' parameter setting is passed in, an outer join is performed. Again, the method looks for common column names. It aligns the values for those columns, and adds the values from the other columns of both data frames. If a either data frame had a value in the field that we join on that was absent from the other, the new columns are filled with NaN:

```python
>>> df1.merge(df2, how='outer')
color name carcolor
0 Blue John NaN
1 Blue George Blue
2 Purple Ringo NaN
3 NaN Paul Red
```

To perform a left join, pass the how='left' parameter setting. A left join keeps only the values from the overlapping columns in the data frame that the .merge method is called on. If the other data frame is missing aligned values, NaN is used to fill in their values:

```python
>>> df1.merge(df2, how='left')
color name carcolor
0 Blue John NaN
1 Blue George Blue
2 Purple Ringo NaN
```

Finally, there is support for a right join as well. A right join keeps the values from the overlapping columns in the data frame that is passed in as the first parameter of the .merge method. If the data frame that .merge was
called on has aligned values, they are kept, otherwise NaN is used to fill in the missing values:

```python
>>> df1.merge(df2, how='right')
color name carcolor
0 Blue George Blue
1 Purple Ringo NaN
2 NaN Paul Red
```

The .merge method has a few other parameters that turn out to be useful in practice. The table below lists them:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Column names to join on. String or list. (Default is intersection of names).</td>
</tr>
<tr>
<td>left_on</td>
<td>Column names for left data frame. String or list. Used when names don't overlap.</td>
</tr>
<tr>
<td>right_on</td>
<td>Column names for right data frame. String or list. Used when names don't overlap.</td>
</tr>
<tr>
<td>left_index</td>
<td>Join based on left data frame index. Boolean</td>
</tr>
<tr>
<td>right_index</td>
<td>Join based on right data frame index. Boolean</td>
</tr>
</tbody>
</table>

**Summary**

Data can often have more utility if we combine it with other data. In the 70's, *relational algebra* was invented to describe various joins among tabular data. The .merge method of the DataFrame lets us apply these operations to tabular data in the pandas world. This chapter described concatenation, and the four basic joins that are possible via .merge.
Avalanche Analysis and Plotting

This chapter will walk through a data analysis and visualization project. It will also include many examples of plotting in pandas.

I live at the base of the Wasatch Mountains in Utah. In the winter it can snow quite a bit, which makes for great skiing. In order to get really great skiing (ie powder), you need to ski in a resort during a storm, be first in line at the resort the morning after a storm, or hike up a backcountry hill.

Hiking, or skinning up a hill, is quite a workout, but gives you access to fresh powder. In addition to wearing out your legs, one must also be cognizant of the threat of avalanches. It just so happens that aspects that make for great skiing also happen to be great avalanche paths. What follows is an analysis I did of the data collected by the Utah Avalanche Center.

Getting Data

The Utah Avalanche Center has great data, but lacks an API to get easy access to the data. I resorted to crawling the data, using the requests and Beautiful Soup libraries. By looking at the source of the data, we see that the table resides in a page that lists summaries of the avalanches, and another page that contains details.
## Avalanche Fatalities

<table>
<thead>
<tr>
<th>Date</th>
<th>Region</th>
<th>Place</th>
<th>Trigger</th>
<th>Number Killed</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/4/2015</td>
<td>Sego</td>
<td>Heber Canyon</td>
<td>Snowboarder</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>05/2/2014</td>
<td>Unita</td>
<td>Green Dog Camp</td>
<td>Snowmobiler</td>
<td>1</td>
<td><a href="#">Delete</a></td>
</tr>
<tr>
<td>02/24/2014</td>
<td>Provo</td>
<td>Tibble Fork</td>
<td>Snowshoer</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>04/11/2013</td>
<td>Salt Lake</td>
<td>Keesler Slides</td>
<td>Skier</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>01/31/2013</td>
<td>Skyline</td>
<td>White Mountain</td>
<td>Snowmobiler</td>
<td>2</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>01/25/2013</td>
<td>Unita</td>
<td>Westfork of Duchesne</td>
<td>Snowmobiler</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>03/12/2013</td>
<td>Mounta</td>
<td>Beaver Basin</td>
<td>1</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
<tr>
<td>02/23/2012</td>
<td>Salt Lake</td>
<td>Dutch Draw</td>
<td>1</td>
<td>1</td>
<td><a href="#">Details</a></td>
</tr>
</tbody>
</table>

### Figure showing overview of fatal avalanches

From the HTML source of the overview page we find the following code:

```html
<div class="content">
 <div class="view view-avalanches view-id-avalanches
 view-display-id-page_1">
 <div class="view-content">
 <table class="views-table cols-7">
 <thead>
 <tr>
 <th class="views-field
 views-field-field-occurrence-date">Date</th>
 <th class="views-field
 views-field-field-region-forecaster">Region</th>
 <th class="views-field
 views-field-field-region-forecaster-1">Place</th>
 <th class="views-field
 views-field-field-trigger">Trigger</th>
 <th class="views-field
 views-field-field-killed">Number Killed</th>
 <th class="views-field
 views-field-view-node"></th>
 <th class="views-field
 views-field-field-coordinates">Coordinates</th>
 </tr>
 <tbody>
 <tr class="odd views-row-first">
 <td class="views-field
 views-field-field-occurrence-date">
 03/4/2015</td>
 </tr>
 </tbody>
 </thead>
 <tbody>
 <tr class="odd views-row-first">
 <td class="views-field
 views-field-field-occurrence-date">
 03/4/2015</td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>
```
Upon inspection we see that inside of the <tr> elements are the names and values for data that might be interesting. We can pull the name off of the end of the class value that starts with views-field-field. The value is the text of the <td> element. For example, from the HTML below:

```html
<td class="views-field
views-field-field-region-forecaster" >Ogden</td>
<td class="views-field
views-field-field-region-forecaster-1" >Hells Canyon</td>
<td class="views-field
views-field-field-trigger" >Snowboarder</td>
<td class="views-field views-field-field-killed">1</td>
Details
```

There is a class attribute that has two space separated class names. The name is region-forecaster (the end of views-field-field-region-forecaster class name), and the value is Ogden.

Here is some code that will scrape this data:

```python
from bs4 import BeautifulSoup
import pandas as pd
import requests as r

base = 'https://utahavalanchecenter.org/
url = base + 'avalanches/fatalities
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}

def get_avalanches(url):
 req = r.get(url, headers=headers)
data = req.text

 soup = BeautifulSoup(data)
content = soup.find(id="content")
trs = content.find_all('tr')
res = []
for tr in trs:
 tds = tr.find_all('td')
data = {}
for td in tds:
 name, value = get_field_name_value(td)
 if not name:
 continue
 data[name] = value
 if data:
 res.append(data)
```

170
The `get_avalanches` function spoofs a modern browser (see headers), and loops over all the table rows (`<tr>`) in the tag with an id set to content. It stores in a dictionary the names and values from the rows of information. The `get_field_name_values` takes in a `<td>` element and pulls out the names and values from it.

We can get a list of dictionaries per avalanche with the following line:

```
avs = get_avalanches(url)
```
Accident: Gold Hill

Observer Name:
Craig Gordon/Ted Scroggin/Trent Meisenheimer

Observation Date:
Saturday, March 8, 2014

Occurrence Date:
Friday, March 7, 2014

Occurrence Time:
5:00 pm

Region:
Gold Hill

Location Name or Route:
Gold Hill

Elevation:
10200

Aspect:
North

Slope Angle:
39

Trigger:
Snowmobiler

Trigger: additional info:
Unintentionally Triggered

Avalanche Type:
Hard Slab

Avalanche Problem:
At this point we have overview data. We want to crawl the detail page for each avalanche to get more information, such as elevation, slope, aspect, and more. The source of the detail page looks like this:

```html
<div id="content" class="column"><div class="section">

<h1>Avalanche: East Kessler</h1>
<div id="block-system-main" class="block block-system">
 <div class="content">
 <div id="node-23838" class="node node-avalanche">

 ...

 <div class="field field-name-field-observation-date field-type-datetime field-label-above">
 <div class="field-label">Observation Date</div>
 <div class="field-items">
 <div class="field-item even">
 Thursday, March 5, 2015
 </div>
 </div>
 </div>
 </div>
 </div>
</div>
</div>
```

The interesting data resides in `<div>` tags that have class set to `field`. The name is found in a `<div>` with class set to `field-label` and the value in a `<div>` with class set to `field-item`.

Here is some code that takes the base url and the dictionary containing the overview for that avalanche. It iterates over every class set to `field` and updates the dictionary with the detailed data:

```python
def get_avalanche_detail(url, item):
 req = r.get(url + item['url'], headers=headers)
 data = req.text

 soup = BeautifulSoup(data)
 content = soup.find(id='content')
 field_divs = content.find_all(class_='field')
 for div in field_divs:
 key_elem = div.find(class_='field-label')
 if key_elem is None:
 print("NONE!!!", div)
 continue
 key = ''.join(key_elem.stripped_strings)
 try:
 value_elem = div.find(class_='field-item')
 value = ''.join(value_elem.stripped_strings).replace(u'\xa0', u' ')
 except AttributeError as e:
 print(e, div)
 if key in item:
 ...
continue
 item[key] = value
return item

def get_avalanche_details(url, avs):
 res = []
 for item in avs:
 item = get_avalanche_detail(url, item)
 res.append(item)
 return res

With this code in hand we can create a data frame with the data by running the following code. Note that this takes about two minutes to scrape the data:

details = get_avalanche_details(base, avs)
df = pd.DataFrame(details)

Sometimes you can get your data by querying a database or using an API. Sometimes you need to resort to scraping.

Munging Data

At this point we have the data, now we want to inspect it, clean it, and munge it. In other words, we get to be a data janitor.

If you want to try this on your computer, you can get access to the scraped data on my GitHub account.

The first thing to do is to check out the datatypes of the columns. We want to make sure we have numeric data, and datetime data in addition to strings:

```python
>>> df = pd.read_csv('data/ava-all.csv')
>>> df.dtypes
Unnamed: 0                        int64
Accident and Rescue Summary:      object
Aspect:                           object
Avalanche Problem:                object
Avalanche Type:                   object
Buried - Fully:                   float64
Buried - Partly:                  float64
Carried:                          float64
Caught:                           float64
Comments:                         object
Coordinates:                      object
Depth:                            object
Elevation:                        object
Injured:                          float64
Killed:                           int64
Location Name or Route:           object
Observation Date:                 object
Observer Name:                    object
Occurrence Time:                  object
```
Occurrence Date: object
Region: object
Slope Angle: float64
Snow Profile Comments: object
Terrain Summary: object
Trigger: object
Trigger: additional info: object
Vertical: object
Video: float64
Weak Layer: object
Weather Conditions and History: object
Width: object
coordinates object
killed int64
occurrence-date object
region-forecaster object
region-forecaster-1 object
trigger object
url object
dtype: object

It looks like some of the values are numeric, though the type of Occurrence Date is object, which means it is a string and not a datetime object. We will address that later.

NOTE
Because I read this data from the CSV file, pandas tried its hardest to coerce numeric values. Had I simply converted the list of dictionaries from the crawled data, the type for all of the columns would have been object, the string data type (because the scraping returned strings).

Describing Data
Now, let's inspect the data and see what it looks like. First let's look at the shape:

>>> df.shape
(92, 38)

This tells us there were 92 rows and 38 columns.
Let'd dig in a little deeper with some summary statistics. A simple way to do this is with .describe:

>>> print(df.describe().to_string(line_width=60))
Buried - Fully:

- **Carried:** 71.000000
- **Caught:** 72.000000
- **Injured:** 5.0
- **Killed:** 92.000000

<table>
<thead>
<tr>
<th></th>
<th>Carried:</th>
<th>Caught:</th>
<th>Injured:</th>
<th>Killed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>71.000000</td>
<td>72.000000</td>
<td>5.0</td>
<td>92.000000</td>
</tr>
<tr>
<td>mean</td>
<td>1.591549</td>
<td>1.638889</td>
<td>1.0</td>
<td>1.163043</td>
</tr>
<tr>
<td>std</td>
<td>1.049863</td>
<td>1.091653</td>
<td>0.0</td>
<td>0.475260</td>
</tr>
<tr>
<td>min</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.0</td>
<td>1.000000</td>
</tr>
<tr>
<td>25%</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.0</td>
<td>1.000000</td>
</tr>
<tr>
<td>50%</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.0</td>
<td>1.000000</td>
</tr>
<tr>
<td>75%</td>
<td>2.000000</td>
<td>2.000000</td>
<td>1.0</td>
<td>1.000000</td>
</tr>
<tr>
<td>max</td>
<td>7.000000</td>
<td>7.000000</td>
<td>1.0</td>
<td>4.000000</td>
</tr>
</tbody>
</table>

Slope Angle:

<table>
<thead>
<tr>
<th></th>
<th>Slope Angle:</th>
<th>Video:</th>
<th>killed</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>42.000000</td>
<td>0.0</td>
<td>92.000000</td>
</tr>
<tr>
<td>mean</td>
<td>37.785714</td>
<td>NaN</td>
<td>1.163043</td>
</tr>
<tr>
<td>std</td>
<td>5.567921</td>
<td>NaN</td>
<td>0.475260</td>
</tr>
<tr>
<td>min</td>
<td>10.000000</td>
<td>NaN</td>
<td>1.000000</td>
</tr>
<tr>
<td>25%</td>
<td>36.000000</td>
<td>NaN</td>
<td>1.000000</td>
</tr>
<tr>
<td>50%</td>
<td>38.000000</td>
<td>NaN</td>
<td>1.000000</td>
</tr>
<tr>
<td>75%</td>
<td>40.000000</td>
<td>NaN</td>
<td>1.000000</td>
</tr>
<tr>
<td>max</td>
<td>50.000000</td>
<td>NaN</td>
<td>4.000000</td>
</tr>
</tbody>
</table>

There are a few takeaways from this. **Unnamed: 0** is the index column that was serialized to CSV. We will ignore that column. **Buried - Fully:** is a column that counts how many people were completely buried in the avalanche. It looks like 64 avalanches had people that were buried. The average number of people buried was 1.15, the minimum was 1 and the maximum was 2. The fact that the minimum and maximum numbers are whole is probably good. It wouldn't make sense that 3.5 people was the maximum.

Another thing to note is that although the minimum was 1.0, there were only 64 avalanches that had entries. That means the remaining avalanches had no entries (`NaN`). This is probably wrong, though it is hard to tell. `NaN` could mean that the reporters did not know whether there were buries. Another option is that it means that there were zero buries. Though I suspect the later with recent avalanches, it could be the former with older entries.
I will leave that data, but we can see if we interpret NaN to really mean 0, then it tells a different story, as the average number of buries drops to .8:

```python
gt['Buried - Fully:'].fillna(0).describe()
```

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.000000</td>
<td>0.804348</td>
<td>0.615534</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td>2.000000</td>
</tr>
</tbody>
</table>

Name: Buried - Fully:, dtype: float64

We could do this for each of the numeric columns here and decide whether we need to change them. If we had access to the someone who knows the data a little better, we could ask them how to resolve such issues.

On an aesthetic note, there are a bunch of columns with colons on the end. Let's clean that up, by replacing colons with an empty string:

```python
df = df.rename(columns={x:x.replace(':', '') for x in df.columns})
```

Note

The above uses a *dictionary comprehension* to create a dictionary from the columns. The syntax:

```python
new_cols = {x:x.replace('::', '') for x in df2.columns}
```

Is the same as:

```python
new_cols = {}
for x in df2.columns:
    new_cols[x] = x.replace('::', '')
```

Categorical Data

The columns that don't appear in the output of `.describe` are columns that have non-numeric values. Let's inspect a few of them. Many of them are *categorical*, in that they don't have free form text, but only a limited set of
options. A nice way to inspect a categorical column is to view the results of the .value_counts column.

Let's inspect the "Aspect" column. In avalanche terms, the aspect is the direction that the slope faces:

```python
>>> df.Aspect.value_counts()
Northeast    24
North        14
East          9
Northwest    14
West          3
Southeast     3
South         1
Name: Aspect, dtype: int64
```

This tells us that slopes that are facing north-east are more prone to slide. Or does it? Skiers tend to ski the north and east aspects. Because they stay out of the sun, the snow stays softer. One should be careful to draw the conclusion that skiing south-facing aspects will prevent one from finding themselves in an avalanche. It is probably the opposite, as the freeze-thaw cycles from the sun can cause instability that leads to slides. (It also happens to be the case that the snow is generally worse to ski on).

Let's look at another categorical column, the "Avalanche Type":

```python
>>> df["Avalanche Type"].value_counts()
Hard Slab       27
Soft Slab       24
Wet Slab         1
Cornice Fall     1
Name: Avalanche Type, dtype: int64
```

This column indicates the type of avalanche. By summing these values we can see that many are empty:

```python
>>> df["Avalanche Type"].value_counts().sum()
53
```

Again, the lack of data could indicate an unknown type of avalanche, or that the reporter forgot to note this. As almost 40% of the incidents are missing values, it might be hard to infer too much from this. Perhaps the missing 40% were all "Cornice Fall"? Were they not really avalanches? Is just the older data missing classifications? (Perhaps the methodology has
changed over time). These are the sorts of questions that need answering when you start digging into data.

Converting Column Types

One value that should be numeric, but didn't show up in `.describe` is the "Depth" column. This column reports on the depth of snowpack that slid during the avalanche. Let's look a little deeper:

```python
>>> df.Depth.head(15)
0    3'
1    4'
2    4'
3   18"
4     8"
5     2'
6     3'
7     2'
8   16"
9     3'
10   2.5'
11   16"
12    NaN
13   3.5'
14     8'
Name: Depth, dtype: object
```

Here we can see that this field is free-form. Free-form text is a data janitors nightmare. Sometimes, it was entered as inches, other times as feet, and occasionally it was missing. As is, it hard to quantify. There is no out-of-the-box functionality for converting text like this to numbers in pandas, so we will not be able to take advantage of vectorized built-ins. But we can pull out a sledgehammer from the python standard library to help us, the regular expression.

Here is a function that takes a string as input and tries to coerce it to a number of inches:

```python
>>> import re
>>> def to_inches(orig):
...     txt = str(orig)
...     if txt == 'nan':
...         return orig
...     reg = r'''(((\d*\.)?\d*)')?(((\d*\.)?\d*)")?'''
...     mo = re.search(reg, txt)
...     feet = mo.group(2) or 0
...     inches = mo.group(5) or 0
...     return float(feet) * 12 + float(inches)
```

179
The `to_inches` function returns `NaN` if that comes in as the `orig` parameter. Otherwise, it looks for optional feet (numbers followed by a single quote) and optional inches (numbers followed by a double quote). It casts these to floating point numbers and multiplies the feet by twelve. Finally, it returns the sum.

Note

Regular expressions could fill up a book on their own. A few things to note. We use *raw strings* to specify them (they have an `r` at the front), as raw strings don't interpret backslash as an escape character. This is important because the backslash has special meaning in regular expressions. \d means match a digit.

The parentheses are used to specify groups. After invoking the `search` function, we get *match objects* as results (mo in the code above). The `.group` method pulls out the match inside of the group. `mo.group(2)` looks for the second left parenthesis and returns the match inside of those parentheses. `mo.group(5)` looks for the fifth left parentheses, and the match inside of it. Normally Python is zero-based, where we start counting from zero, but in the case of regular expression groups, we start counting at one. The first left parenthesis indicates where the first group starts, group one, not zero.

Let's add a new column to store the depth of the avalanche in inches:

```python
>>> df['depth_inches'] = df.Depth.apply(to_inches)
```

Now, let's inspect it to make sure it looks ok:

```python
>>> df.depth_inches.describe()
count    61.000000
mean     32.573770
std      17.628064
min       0.000000
25%      24.000000
50%      30.000000
75%      42.000000
max      96.000000
```
Name: depth_inches, dtype: float64

Note that we are still missing values here, which is a little troubling because an avalanche by definition is snow sliding down a hill, and if no snow slid down, how do you have an avalanche? If you wanted to assume that the median is a good default value you could use the following:

```python
df['depth_inches'] = df.depth_inches.fillna(df.depth_inches.median)
```

Another column that should be numeric is the "Vertical" column. This indicates how many vertical feet the avalanche slid. We can see the that dtype is object:

```python
>>> df.Vertical.head(15)
0    1500
1     200
2     175
3     125
4    1500
5     250
6      50
7     1000
8      600
9     350
10    2500
11    800
12     900
13    Unknown
14    1000
Name: Vertical, dtype: object
```

pandas probably would have coerced this to a numeric column if that pesky "Unknown" wasn't in there. Is that really different than NaN? Using the to_numeric function, we can force this column to be numeric. If we pass errors='coerce', then "Unknown" will be converted to NaN:

```python
>>> df['vert'] = pd.to_numeric(df.Vertical, errors='coerce')
```

Dealing with Dates

Let's look at the "Occurrence Date" column:

```python
>>> df['Occurrence Date'].head()
0    Wednesday, March 4, 2015
1     Friday, March 7, 2014
2    Sunday, February 9, 2014
3    Saturday, February 8, 2014
4    Thursday, April 11, 2013
Name: Occurrence Date, dtype: object
```
Note that the dtype is object, so as is, we cannot perform date analysis on this. In this case, pandas does have a function for coercion, the to_datetime function:

```python
>>> pd.to_datetime(df['Occurrence Date']).head()
0   2015-03-04
1   2014-03-07
2   2014-02-09
3   2014-02-08
4   2013-04-11
Name: Occurrence Date, dtype: datetime64[ns]
```

That's better, the dtype is datetime64[ns] for this. Let's make a column for year, so we can see yearly trends. Date columns in pandas have a .dt attribute, that allows us to pull date parts out of it:

```python
>>> df['year'] = pd.to_datetime(...     df['Occurrence Date']).dt.year
```

The following table lists the attributes found on the .dt attribute:

<table>
<thead>
<tr>
<th>ATTRIBUTE</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>Date without timestamp</td>
</tr>
<tr>
<td>day</td>
<td>Day of month</td>
</tr>
<tr>
<td>dayofweek</td>
<td>Day number (Monday=0)</td>
</tr>
<tr>
<td>dayofyear</td>
<td>Day of year</td>
</tr>
<tr>
<td>days_in_month</td>
<td>Number of days in month</td>
</tr>
<tr>
<td>daysinmonth</td>
<td>Number of days in month</td>
</tr>
<tr>
<td>hour</td>
<td>Hours of timestamp</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Is last day of month</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Is first day of month</td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Is last day of quarter</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Is first day of quarter</td>
</tr>
<tr>
<td>is_year_end</td>
<td>Is last day of year</td>
</tr>
<tr>
<td>is_year_start</td>
<td>Is first day of year</td>
</tr>
<tr>
<td>microsecond</td>
<td>Microseconds of timestamp</td>
</tr>
<tr>
<td>minute</td>
<td>Minutes of timestamp</td>
</tr>
</tbody>
</table>
Let's look at what day of the week avalanches occur on. The `dt` attribute has the `weekday` and `dayofweek` attribute (both are the same):

```python
>>> dates = pd.to_datetime(df['Occurrence Date'])
>>> dates.dt.dayofweek.value_counts()
5    29
6    14
4    14
2    10
0    10
3     9
1     6
Name: Occurrence Date, dtype: int64
```

This gives us the number of the weekday. We could use the `.replace` method to map the integer to the string value of the weekday. In this case, we can see that every date in the original "Occurrence Date" has the day of week and there are no missing values:

```python
>>> df['Occurrence Date'].isnull().any()
False
```

Another option to get the weekday name is to split it off of the string:

```python
>>> df['dow'] = df['Occurrence Date'].apply(lambda x: x.split(',')[0])
```

```python
>>> df.dow.value_counts()
Saturday     29
Sunday       14
Friday       14
Monday       10
Wednesday    10
Thursday     9
```
Apparently skiing on Tuesday is the safest day. Again, this is a silly conclusion as the day doesn't determine whether a slide will occur. You need to have insight into your data in order to draw conclusions from it.

Splitting a Column into Two Columns

Another problematic column is the "coordinates" column:

```python
>>> df.coordinates.head()
0    NaN
1    40.812120000000, -110.906296000000
2    39.585986000000, -111.270003000000
3    40.482366000000, -111.648088000000
4    40.629000000000, -111.666412000000
Name: coordinates, dtype: object
```

This column has both the latitude and longitude embedded in it in string form. Or, it might be empty. We will need some logic to pull these values out. Here we use a function to tease the latitude out:

```python
>>> def lat(val):
...     if str(val) == 'nan':
...         return val
...     else:
...         return float(val.split(',')[0])
>>> df['lat'] = df.coordinates.apply(lat)
```

We can describe the result to see if it worked. The values should be centered pretty evenly, because these are located in Utah:

```python
>>> df.lat.describe()
count    78.000000
mean     39.483177
std       6.472255
min       0.000000
25%      40.415395
50%      40.602058
75%      40.668936
max      41.711752
Name: lat, dtype: float64
```

In this case, we see there is a minimum of 0. This is bad data. A latitude of zero is not in Utah. We will to address that in a bit. First let's address longitude. This time we will use a `lambda` function. This function does almost the same thing as our `lat` function above, except it uses an index of
1. I don't consider this code very readable, but wanted to show that a lambda function could be used to perform this logic:

```python
>>> df['lon'] = df.coordinates.apply(
...     lambda x: float(x.split(',')[1]) if str(x) != 'nan' \
...     else x)

Again, we can do a quick sanity check with .describe:

```python
df.lon.describe()
``` count 78.000000
mean -108.683679
std 17.748443
min -111.969482
25% -111.679808
50% -111.611396
75% -111.517262
max 0.000000
Name: lon, dtype: float64

We still have the zero value problem. On the longitude we see 0 in the max location, because the values are negative. Let's address these zeros:

```python
>>> df['lat'] = df.lat.replace(0, float('nan'))
>>> df['lon'] = df.lon.replace(0, float('nan'))
>>> df.lon.describe()
``` count 76.000000
mean -111.543775
std 0.357423
min -111.969482
25% -111.683284
50% -111.614593
75% -111.520059
max -109.209852
Name: lon, dtype: float64

Much better! No zeros. Though, this means that we cannot plot these avalanches on our map. If we were eager enough, we could probably determine these coordinates by hand, by reading the description. Averaging out the latitudes, and longitudes of the other slides would probably not be effective here to fill in these missing values.

**Analysis**

The final product of my analysis was an infographic containing various chunks of information derived from the data. The first part was the number of fatal avalanches since 1995:

```python
>>> ava95 = df[df.year >= 1995]
>>> len(ava95)
```
I also calculated the total number of casualties. This is just the sum of the "killed" column:

```python
>>> ava95.killed.sum()
72
```

The next part of my infographic was a plot of count of people killed vs year. Here's some code to plot that information:

```python
>>> ax = fig.add_subplot(111)
>>> ava95.groupby('year').sum().reset_index(
...).plot.scatter(x='year', y='killed', ax=ax)
>>> fig.savefig('/tmp/pd-ava-1.png')
```

![A figure illustrating plotting deaths over time](image)

In the table below we summarize the various plot types that pandas supports for data frames.

<table>
<thead>
<tr>
<th>Plot Methods</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot.area</td>
<td>Creates an area plot for numeric columns</td>
</tr>
<tr>
<td>plot.bar</td>
<td>Creates a bar plot for numeric columns</td>
</tr>
</tbody>
</table>
plot.barh  Creates a horizontal bar plot for numeric columns
plot.box   Creates a box plot for numeric columns
plot.density  Creates a kernel density estimation plot for numeric columns (also plot.kde)
plot.hexbin Creates a hexbin plot. Requires x and y parameters
plot.hist  Creates a histogram for numeric columns
plot.line  Create a line plot. Plots index on x column, and numeric column values for y
plot.pie   Create a pie plot. Requires y parameter or subplots=True for DataFrame
plot.scatter Create a scatter plot. Requires x and y parameters

The code to plot is a mouthful. Let's examine what is going on. First we groupby the "year" column. We sum all of the numeric columns. The result of this is a data frame with the index containing the years and the columns being the sum of the numeric columns. We call .reset_index on this to push the index of years that we just grouped by back into a column. On this data frame we call .plot.scatter and pass in the x and y columns we want to use. (We reset the index so we could pass 'year' to x).

In my infographic, I ended up using the Seaborn library, because it has a regplot function that will insert a regression line for us. I also changed the marker to an X, and passed in a dictionary to scatter_kws to make the size larger and set the color to a shade of red:

```python
>>> import seaborn as sns
>>> ax = fig.add_subplot(111)
>>> summed = ava95.groupby('year').sum().reset_index()
>>> sns.regplot(x='year', y='killed', data=summed,
... lowess=0, marker='x',
... scatter_kws={'s':100, 'color':'#a40000'})
>>> fig.savefig('/tmp/pd-ava-2.png')
```

187
A figure illustrating plotting deaths over time, with a regression line compliments of the seaborn library. Note that Seaborn changes the default aesthetics of matplotlib. Rather than saving this as a png file, I saved it as an SVG file. This gave me the ability to edit the graph in a vector editor and the final product ended up slightly tweaked.
A figure illustrating avalanche deaths in Utah, since 1960. This was created with Python, pandas, and Seaborn. Later the image was imported into Inkscape to add text and tweak. In this book, we examine deaths since 1995.

Plotting on Maps

Matplotlib has the ability to plot on maps, but to be honest it is painful, and the result is static. A better option if you are using Jupyter notebooks for analysis is to use Folium. Folium provides an interactive map very similar to Google Maps, which is useable inside of Jupyter.

After a quick pip install folium and running the following code in Jupyter, you will have a nice little map. The code puts markers at the latitude and longitude of the slide event, and it also embeds the "Accident and Rescue Summary" column in a popup:

```python
import folium
from IPython.display import HTML

def inline_map(map):
 map._build_map()
 return HTML('""<iframe srcdoc="{}"></iframe>"
```

```python
import folium
from IPython.display import HTML

def inline_map(map):
 map._build_map()
 return HTML('""<iframe srcdoc="{}"></iframe>"
```
def summary(i, row):
    return '<b>{:02d} {} {} {}</b>
    <p>{}</p>'.format(i, row['year'], row['Trigger'], row['Location Name or Route'], row['Accident and Rescue Summary'])

center = [40.5, -111.5]
map = folium.Map(location=center, zoom_start=10, tiles='Stamen Terrain', height=700)
for i, row in ava95.iterrows():
    if str(row.lat) == 'nan':
        continue
    map.simple_marker([row.lat, row.lon], popup=summary(r, row))
inline_map(map)

An image of the map was added to the infographic with some explanatory text.

![Map of avalanche locations](image)

A figure illustrating a portion of the Folium map used in the infographic.

**Bar Plots**

I included a few bar plots, because they allow for quick comparisons. I wanted to show what triggered slides, and at which elevations they occur. This is simple in pandas.
Because the "Trigger" column is categorical, we can use the .value_counts method to view distribution:

```python
>>> ava95.Trigger.value_counts()
Snowmobiler 25
Skier 14
Snowboarder 12
Unknown 3
Natural 3
Hiker 2
Snowshoer 1
Name: Trigger, dtype: int64
```

To make this into a bar plot, simply add .plot.bar():

```python
>>> ax = fig.add_subplot(111)
>>> ava95.Trigger.value_counts().plot.bar(ax=ax)
>>> fig.savefig('/tmp/pd-ava-3.png')
```

Figure illustrating triggers of avalanches.

For the infographic, I added a few graphics, and text to spice it up.
Figure illustrating triggers of avalanches used in infographic.

I also wanted a visualization of the elevations at which avalanches occur. I used a horizontal histogram plot for this, so I called `.plot.hist(orientation='horizontal')`. Sadly, the column data type was set to string as it contained `Unknown` in it. In order to get a histogram we need to convert it to a numeric column. Not a problem, we just need to wrap the column with `pd.to_numeric`:

```python
>>> ax = fig.add_subplot(111)
>>> pd.to_numeric(ava95.Elevation, errors='coerce')
... .plot.hist(orientation='horizontal', ax=ax)
>>> fig.savefig('/tmp/pd-ava-4.png')
```
Figure illustrating horizontal histogram of avalanche elevations.
Figure illustrating plot of avalanche elevations used in infographic. The plot is slightly different, as this had older data. I also added in the highest peak and the valley floor to give some sense of scale.

Assorted Plots

Infographics with images are better, so I had a few more images related to avalanches. One was a graph of the slopes where the snow slid. I added a little jitter to the slopes and changed the alpha values so they show up better:

```python
>>> import math
>>> import random

>>> def to_rad(d):
```
... return d* math.pi / 180

>>> ax = plt.subplot(111)
>>> for i, row in df.iterrows():
...     jitter = (random.random() - .5)*.2
...     plt.plot([0, 1], [0, math.tan(to_rad(row['Slope Angle'] +
...     jitter))], alpha=.3, color='b', linewidth=1)
>>> ax.set_xlim(0, 1)
>>> ax.set_ylim(0, 1)
>>> ax.set_aspect('equal', adjustable='box')
>>> fig.savefig('/tmp/pd-ava-5.png')

Figure illustrating plot of avalanche slopes. Note that the default ratio of the plot is not square, hence the call to ax.set_aspect('equal', adjustable='box').

For the infographic version, I added some text explaining the outlier in my SVG editor, and a protractor to help visualize the angles.
Figure illustrating slopes in the infographic

Another image that I included was a rose plot of the aspects. The matplotlib library has the ability to plot in polar coordinates, so I converted the categorical values of the "Aspect" column into degrees and plotted that:

```python
>>> mapping = {'North': 90, 'Northeast': 45, 'East': 0,
... 'Southeast': 315, 'South': 270, 'Southwest':225,
... 'West': 180, 'Northwest': 135}
>>> ax = plt.subplot(111, projection='polar')
>>> s = df.Aspect.value_counts()
>>> items = list(s.items())
>>> thetas = [to_rad(mapping[x[0]]-22.5) for x in items]
>>> radii = [x[1] for x in items]
>>> bars = ax.bar(thetas, radii)
>>> fig.savefig('/tmp/pd-ava-6.png')
```
Figure illustrating ratios of avalanche aspects.

The final image in the infographic was touched up slightly in the vector editor, but you can see that matplotlib is responsible for the graphic portion.

Aspects

The aspect of a slide is the direction of the face. Most avalanches occur on north or northeast facing aspects. For skiers, the snow is typically best at these aspects, and that nice powder can also lead to ripe avalanche conditions.

Figure illustrating aspects in the infographic.

Summary
In this chapter we looked at a sample project. Even without a database or CSV file floating around, we were able to scrape the data from a website. Then, using pandas, we did some pretty heavy janitorial work on the data. Finally, we were able to do some analysis and generate some plots of the data. Since matplotlib has the ability to save as SVG, we were able to import these plots into a vector editor, and create a fancy infographic from them.

This should give you a feel for the kind of work that pandas will enable. Combined with the power of Python, you are only limited by your imagination. (And your free time).

18 - http://utahavalanchecenter.org/
19 - http://docs.python-requests.org/en/master/
20 - https://www.crummy.com/software/BeautifulSoup/
22 - The folks at the Utah Avalanche Center approached me after I released my infographic and ask that I redo the data with only details from 1995, as they claimed that the data from prior years was less reliable.
23 - https://stanford.edu/~mwaskom/software/seaborn/
Summary

THANKS FOR LEARNING ABOUT THE PANDAS LIBRARY. HOPEFULLY, AS YOU HAVE read through this book, you have begun to appreciate the power in this library. You might be wondering what to do now that you have finished this book?

I've taught many people Python and pandas over the years, and they typically question what to do to continue learning. My answer is pretty simple: find a project that you would like to work on and find an excuse to use Python or pandas. If you are in a business setting and use Excel, try to see if you can replicate what you do in Jupyter and pandas. If you are interested in Machine Learning, check out Kaggle for projects to try out your new skills. Or simply find some data about something you are interested in and start playing around.

For those who like videos and screencasts, I offer a screencast service called PyCast 25 which has many examples of using Python and pandas in various projects.

As pandas is an open source project, you can contribute and improve the library. The library is still in active development.

25 - https://pycast.io
About the Author

Matt Harrison has been using Python since 2000. He runs MetaSnake, a Python and Data Science consultancy and corporate training shop. In the past, he has worked across the domains of search, build management and testing, business intelligence and storage.

He has presented and taught tutorials at conferences such as Strata, SciPy, SCALE, PyCON and OSCON as well as local user conferences. The structure and content of this book is based off of first hand experience teaching Python to many individuals.

He blogs at hairysun.com and occasionally tweets useful Python related information at @__mharrison__. 
Also Available

Beginning Python Programming

*Treading on Python: Beginning Python Programming* by Matt Harrison is the complete book to teach you Python fast. Designed to up your Python game by covering the basics:

- Interpreter Usage
- Types
- Sequences
- Dictionaries
- Functions
- Indexing and Slicing
- File Input and Output
Reviews

Matt Harrison gets it, admits there are undeniable flaws and schisms in Python, and guides you through it in short and to the point examples. I bought both Kindle and paperback editions to always have at the ready for continuing to learn to code in Python.
—S. Oakland

This book was a great intro to Python fundamentals, and was very easy to read. I especially liked all the tips and suggestions scattered throughout to help the reader program Pythonically :)
—W. Dennis

You don’t need 1600 pages to learn Python
Last time I was using Python when Lutz's book Learning Python had only 300 pages. For whatever reasons, I have to return to Python right now. I have discovered that the same book today has 1600 pages.
Fortunately, I discovered Harrison's books. I purchased all of them, both Kindle and paper. Just few days later I was on track.
Harrison's presentation is just right. Short and clear. There is no 50 pages about the Zen and philosophy of using if-then-else construct. Just facts.
—A. Customer
*Treading on Python: Vol 2: Intermediate Python* by Matt Harrison is the complete book on intermediate Python. Designed to up your Python game by covering:

- Functional Programming
- Lambda Expressions
- List Comprehensions
- Generator Comprehensions
- Iterators
- Generators
- Closures
- Decorators
- And more …

**Reviews**

*Complete! All you must know about Python Decorators: theory, practice, standard decorators.*
All written in a clear and direct way and very affordable price.
Nice to read in Kindle.
—F. De Arruda (Brazil)

This is a very well written piece that delivers. No fluff and right to the point, Matt describes how functions and methods are constructed, then describes the value that decorators offer.

Highly recommended, even if you already know decorators, as this is a very good example of how to explain this syntax illusion to others in a way they can grasp.
—J Babbington

Decorators explained the way they SHOULD be explained …
There is an old saying to the effect that “Every stick has two ends, one by which it may be picked up, and one by which it may not.” I believe that most explanations of decorators fail because they pick up the stick by the wrong end.
What I like about Matt Harrison’s e-book “Guide to: Learning Python Decorators” is that it is structured in the way that I think an introduction to decorators should be structured. It picks up the stick by the proper end…
Which is just as it should be.
—S. Ferg

This book will clear up your confusions about functions even before you start to read about decoration at all. In addition to getting straight about scope, you’ll finally get clarity about the difference between arguments and parameters, positional parameters, named parameters, etc. The author concedes that this introductory material is something that some readers will find “pedantic,” but reports that many people find it helpful. He’s being too modest. The distinctions
he draws are essential to moving your programming skills beyond doing a pretty good imitation to real fluency.
—R. Careago

**Ebook Formatting: KF8, Mobi & EPUB**

*Ebook Formatting: KF8, Mobi & EPUB* by Matt Harrison is the complete book on formatting for all Kindle and EPUB devices. A good deal of the eBooks found in online stores today have problematic formatting. *Ebook Formatting: KF8, Mobi & EPUB* is meant to be an aid in resolving those issues. Customers hate poorly formatted books. Read through the reviews on Amazon and you'll find many examples. This doesn't just happen to self-published books. Books coming out of big Publishing Houses often suffer similar issues. In the rush to put out a book, one of the most important aspects affecting readability is ignored.

This books covers all aspects of ebook formatting on the most popular devices (Kindle, iPad, Android Tablets, Nook and Kobo):
• Covers
• Title Pages
• Images
• Centering stuff
• Box model support
• Text Styles
• Headings
• Page breaks
• Tables
• Blockquotes
• First sentence styling
• Non-ASCII characters
• Footnotes
• Sidebars
• Media Queries
• Embedded Fonts
• Javascript
• and more …

26 - http://hairysun.com/books/tread/
27 - http://hairysun.com/books/treadvol2/
One more thing

Thank you for buying and reading this book.

If you have found this book helpful, I have a big favor to ask. As a self-published author, I don't have a big Publishing House with lots of marketing power pushing my book. I also try to price my books so that they are much more affordable.

If you enjoyed this book, I hope that you would take a moment to leave an honest review on Amazon. A short comment on how the book helped you and what you learned makes a huge difference. A quick review is useful to others who might be interested in the book.

Thanks again!
Write a review here.
目录

From the Author 4
Introduction 5
Installation 8
Data Structures 11
Series 14
Series CRUD 22
Series Indexing 29
Series Methods 39
Series Plotting 72
Another Series Example 80
DataFrames 91
Data Frame Example 98
Data Frame Methods 112
Data Frame Statistics 131
Grouping, Pivoting, and Reshaping 139
Dealing With Missing Data 155
Joining Data Frames 162
Avalanche Analysis and Plotting 168
Summary 199
About the Author 200
Also Available 201
One more thing 207